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Truth Tables: An Introduction

Imagination test: an argument can be identified as deductively valid if and only if it
was impossible to imagine a scenario where all of the premises were true and
conclusion false.

• If you can imagine such a scenario, then the argument is invalid.

• If you cannot imagine such a scenario, then either the argument is valid.
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Problems with the Imagination Test

The “imagination test” is a problematic test for a couple of reasons:

1 Some arguments consist of many premises and the state of affairs that these
premises express can be difficult to picture in one’s mind.

2 People sometimes judge that certain arguments are “valid” because (1) they
believe the conclusion and (2) are unwilling to consider scenarios where the
premises are true and the conclusion is false.

3 Arguments about abstract topics can be difficult to imagine
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A New Test

What we want then is a new test that

1 does not rely upon the limited imaginative powers of human beings

2 is immune to bias

3 can be formulated about any subject matter.
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What is a truth table?

Definition (truth table)

A truth table for PL is a table that provides a graphical way of representing valuations
of wff(s) under a set of interpretations.



A truth table is a decision procedure

A truth table can be used to mechanically test sets of wffs and arguments.

Definition (decision procedure)

A decision procedure is a mechanical method that determines in a finite number of
steps whether a proposition, set of propositions, or argument has a certain logical
property (one of these being whether or not an argument is deductively valid!).
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Truth Tables: Step by Step

• Step 1: Write down the wff.

• Step 2: Write the truth value (T or F ) under each propositional letter in the wff
for each interpretation I .

• Step 3: Assign T or F to subformulas in the order that the wff is constructed
using (1) the truth values assigned to the wffs used to construct those
subformulas and (2) the valuation function associated with the operator
introduced in the construction.
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Truth Table for Five Complex Wffs

P ¬P

T F
F T

Table: Truth Table: Negation

P R P ∧ R P ∨ R P → R P ↔ R

T T T T T T
T F F T F F
F T F T T F
F F F F T T

Table: Truth Table: Conjunction, Disjunction, Conditional, and Biconditional



Truth Table: An Example

Let’s determine the truth value for P → ¬R under a single interpretation of P and R:
I (P) = T and I (R) = F .

• Step 1: Write out the formula or set of formulas you want to test.

P → ¬ R
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Truth Table: An Example

Next, consider how P → ¬R is constructed.

1 P is a wff

2 R is a wff

3 If R is a wff, then ¬R is a wff

4 If P is a wff and ¬R is a wff, then P → ¬R is a wff.

Assign truth values to the subformulas of P → ¬R in that order.
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Truth Table: An Example

Start by writing truth values under the proposition letters.
Since I (P) = T and I (R) = F write these values under
the letters.

P → ¬ R

T F

1 P is a wff

2 R is a wff

3 ¬R is a wff

4 P → ¬R is a wff.



Truth Table: An Example

The next wff constructed is ¬R using R. So, determine the
truth value of ¬R using the truth value of R.

P → ¬ R

T T F

1 P is a wff

2 R is a wff

3 ¬R is a wff

4 P → ¬R is a wff.



Truth Table: An Example

The next wff constructed is P → ¬R using P and ¬R. So,
determine the truth value of P → ¬R using the truth value
of P and ¬R.

P → ¬ R

T T T F

1 P is a wff

2 R is a wff

3 ¬R is a wff

4 P → ¬R is a wff.



The Truth-Table Method

• We have seen how the truth value of a complex wff ϕ can be determined under a
single interpretation of the propositional letters.

• The truth-table method, however, is more general in that it allows for
determining the truth value of wffs under all admissible interpretations of the
propositional letters. For example, consider the following wff: ¬P ∨ ¬R.
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Truth-Table Method for n-Interpretations

Step 1: Write out the wff ϕ and all of the propositional letters in ϕ all of the
propositional letters to the left of ϕ.
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Truth-Table Method for n-Interpretations

Step 2: Write all possible interpretations for the propositional letters in ϕ under the
propositional letters.

How many interpretations are there?

The number of possible interpretations (and therefore rows) is determined by the
number of propositional letters in the set of wffs being considered. That is, the
number of rows required for a truth table of any argument is determined by 2n where n
is the number of propositional letters in the argument.

1 Since P involves 1 propositional letter, (21 = 2) rows are needed.

2 Since P ∧ Q involves 2 propositional letters, (22 = 4) rows are needed.

3 Since (P ∧ Q) ∧ R involves 3 propositional letters, (23 = 8) rows are needed.
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T T
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Truth-Table Method for n-Interpretations

Step 3: For each row, write the truth values under the corresponding letter in the row.

P R ¬ P ∨ ¬ R

T T T T
T F T F
F T F T
F F F F
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Truth-Table Method for n-Interpretations

Step 4: Assign T or F to subformulas in the order that the wff is constructed using (1)
the truth values assigned to the wffs used to construct those subformulas and (2) the
valuation function associated with the operator introduced in the construction.

P R ¬ P ∨ ¬ R

T T F T F F T
T F F T T T F
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The above shows the truth value of ¬P ∨ ¬R under all of the different ways that P
and R can be interpreted in PL.
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Truth-Table Analysis

Next, let’s use truth tables to test whether:

1 a wff ϕ is a contingency, tautology, or contradiction.

2 a pair of wffs ϕ, psi are equivalent

3 a collection of wffs ϕ, ψ are consistent

4 an ”argument” is valid
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Contingency, Tautology, Contradiction
Contradiction

Definition (Contradiction)

A proposition P is a contradiction if and only if P is always false.

Definition (PL-Contradiction)

A wff ϕ is a PL-contradiction if and only if v(ϕ) = F under every interpretation.
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Tautology

Definition (Tautology)

A proposition P is a tautology if and only if P is always true.
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Contingency, Tautology, Contradiction
Tautology

Definition (Tautology)

A proposition P is a tautology if and only if P is always true.

Definition (PL-Tautology)

A wff ϕ is a PL-tautology if and only if v(ϕ) = T under every interpretation.



Contingency, Tautology, Contradiction
Contingency

Definition (Contingency)

A proposition P is a contingency if and only if the truth value of P is depends upon
the nature of the world.

Definition (PL-Contingency)

A wff ϕ is a PL-contingency if and only if ϕ is neither a contradiction nor a tautology.
Equivalently, ϕ is a PL-contingency if and only if ϕ is v(ϕ) = T under at least one
intrepretation and v(ϕ) = F under at least one interpretation.
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Contingency, Tautology, Contradiction
How to Test

We can use a truth table to check whether a wff is a contradiction, tautology, or
contingency by:

1 Constructing the truth table

2 Checking whether the wff is false under every interpretation (contradiction), true
under every interpretation (tautology), or neither true nor false under every
intrepretation (contingency).
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Contingency, Tautology, Contradiction
Practice

Is ¬P ∨ ¬R a PL-contingency, PL-tautology, or PL-contradiction?

P R ¬ P ∨ ¬ R
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Contingency, Tautology, Contradiction
Practice

1 It is not the case that if Liz does not
eat ice cream, then she does not eat
cake.

2 Translate as ¬(¬I → ¬C )

3 Create the table for ¬(¬I → ¬C )

4 Check whether the wff is a
PL-contingency, PL-tautology, or
PL-contradiction.

I C ¬ ( ¬ I → ¬ C )

T T F F T T F T
T F F F T T T F
F T T T F F F T
F F F T F T T F

The proposition ”It is not the case that if
Liz does not eat ice cream, then she does
not eat cake” is a contingency since
¬(¬I → ¬C ) is a PL-contingency.
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Consistency

Definition (Consistent)

A set of propositions is consistent iff they all can be true (there is some way that they
all can be true).

Definition (PL-Consistent)

A set of wffs Γ is PL-consistent if and only if there is at least one interpretation such
that all of the members of Γ are true.

So, if ϕ and ψ are wffs, the set of wffs {ϕ, ψ} is PL-consistent provided there is at
least one interpretation where both ϕ and ψ are true.
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Inconsistency

Definition (Inconsistent)

A set of propositions is inconsistent iff they cannot all be true at the same time.

Definition (PL-Inconsistenct)

A set of wffs Γ is PL-inconsistent if and only if they are not PL-consistent (there is no
there interpretation such that all of the members of Γ are true.)
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Consistency

In many cases we can just see that a set of wffs is PL-consistent.

Example (A Trivial Example)

• P and Q are PL-consistent.

• Suppose I (P) = T and I (Q) = T

• If I (P) = F and I (Q) = T , then there is an interpretation for which P and Q
are both true.

• Therefore, P and Q are PL-consistent.
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In many cases we can just see that a set of wffs is PL-consistent.

Example (A Trivial Example)

• P and Q are PL-consistent.

• Suppose I (P) = T and I (Q) = T

• If I (P) = F and I (Q) = T , then there is an interpretation for which P and Q
are both true.
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Consistency

In other cases, it isn’t obvious.

Example (Example)

• Are P ∨ Q and ¬(P ∧ Q) PL-consistent?

• What about ¬P ∨ Q and ¬(P ∧ Q)?

• What about ¬P ∨ (Q ∨ ¬R) and ¬(P ↔ Q)?



Consistency

A truth table offers a method for testing whether a set of propositions is consistent or
inconsistent.

1 Write each wff down in a row.

2 Construct a single truth table.

3 Check for whether there is at least one row where all the wffs in the row are T.

4 If there is a row, then the test says the wffs are consistent.

5 If there is not a row, then the test says the wffs are inconsistent.
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Consistency
Example

Let’s test whether P → Q,P ∧ Q,P ∨ ¬Q is PL-consistent.

P Q P → Q P ∧ Q P ∨ ¬ Q

T T T T T T T T T T F T
T F T F F T F F T T T F
F T F T T F F T F F F T
F F F T F F F F F T T F

Notice that in the first row, all three wffs are true. Therefore, there is at least one
interpretation where all the wffs are true. Therefore, the set is PL-consistent.
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Consistency
Example

Let’s test whether these wffs are PL-consistent: (P → Q), (¬R ∨ Q),R ∧ ¬Q:

P Q R ( P → Q ) ( ¬ R ∨ Q ) ( R ∧ ¬ Q )

T T T T T T F T T T T F F T
T T F T T T T F T T F F F T
T F T T F F F T F F T T T F
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There is no row where all the wffs are T, so the set is PL-inconsistent.
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Consistency
Application

Example

• Obvious: “John is tall” and “Mary is tall” are consistent. They both can be true
if “John is tall” is true and “Mary is tall” is true.

• Not So Obvious: “If John is tall, then Mary is happy” and “John is not tall or
Mary is happy.”
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true. So, J → M,¬J ∨M is PL-consistent,
so the sentences are consistent.
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Equivalence

Definition (Equivalent)

A pair of propositions P and Q are equivalent provided whenever P is true, Q is true
and whenever P is false, Q is false.

Definition (PL-Equivalent)

A members of a set of wffs Γ are PL-equivalent iff for every interpretation of the
members in γ1, . . . γn ∈ Γ, v(γ1) = . . . v(γn).

In other words, if you have a set of wffs ϕ, ψ and the truth values match for every
interpretation, then the wffs are equivalent.
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Equivalence

Example (A Trivial Example)

• P and P are equivalent.

• If I (P) = T , then I (P) = T

• If I (P) = F , then I (P) = F

• Thus, for every interpretation of P and P, whenever P is true, P is true, and
whenever P is false, P is false.
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Equivalence

A truth table offers a method for testing whether the members in a set of wffs are
equivalent.

1 Write each wff down in a row.

2 Construct a single truth table.

3 For each row, check for whether the truth values match

4 If they match for each row, then the wffs are equivalent.

5 If they do not match for each row, then the wffs are not equivalent.



Equivalence

A truth table offers a method for testing whether the members in a set of wffs are
equivalent.

1 Write each wff down in a row.

2 Construct a single truth table.

3 For each row, check for whether the truth values match

4 If they match for each row, then the wffs are equivalent.

5 If they do not match for each row, then the wffs are not equivalent.



Equivalence

Are P ↔ Q,P → Q PL-equivalent?

P Q P ↔ Q P → Q

T T T T T T T T
T F T F F T F F
F T F F T F T T
F F F T F F T F

No, they are not PL-equivalent.
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Validity

Definition (Valid)

An argument is valid iff it is impossible for the premises to be true and the conclusion
false.

Definition (Semantic Entailment in PL)

A set of PL-wffs Γ semantically entails a PL-wff ψ iff ther eis no interpretation I in
which all of the members of Γ are true and ψ is false.

If A,B,C are the premises and D is the conclusion of an argument, A,B,C
semantically entail D iff there is no interpretation where A,B,C are all true and D is
false.
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Semantic Entailment

1 We can say that Γ semantically entails ψ or ψ is a semantic consequence of Γ.

2 We make use of the double turnstile “|=” to express entailment (“models” or
“semantically entails”)

3 Γ |= ψ says “Γ semantically entails ψ”

4 If it is not the case that Γ semantically entails ψ, then we write Γ ̸|= ψ.
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Semantic Entailment

A truth table offers a method for testing whether Γ |= ψ.

1 Write each wff down in a row.

2 Construct a single truth table.

3 For each row, check for a row where all the members of Γ are T and ψ is F.

4 If there is a row, then it is not the case that Γ semantically entails ψ. So, we write
Γ ̸|= ψ

5 If there is no such row, then it is the case that Γ semantically entails ψ. So, we
write Γ |= ψ
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Does P → Q and P semantically entail Q?

P Q P → Q P |= Q
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Yes. Notice that there is no row where P → Q and P are true and Q is false. So,
P → Q,P |= Q
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1 “If John is tall, then Mary is happy.
Mary is not happy. Therefore, John is
not tall.”

2 Translate as J → M,¬M |= ¬J
3 Create the table for J → M,¬M |= ¬J
4 Check whether J → M,¬M

semantically entails ¬J.
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Some Shortcuts

1 If ψ is a PL-tautology, then Γ |= ψ.

2 Since Γ ̸|= ψ only when ψ is false, check rows where ψ is false.

3 If Γ is PL-inconsistent, then Γ |= ψ.

4 Since Γ ̸|= ψ only when Γ is a PL-consistent, check rows where all the wffs in Γ
are truie.



Limitations of Truth Tables

• Problem 1: Provided an argument is capable of being fully expressed by a
truth-functional language like PL, the truth-table method seemingly guarantees
there is a way to determine whether that argument is “valid” or “invalid”, but not
every English argument can be represented in a truth-functional language like PL.
There are some arguments in English that are valid, but are not valid in PL.

• Problem 2: The truth-table test’s complexity increases exponentially. For every
new propositional letter introduced, the table grows:
21 = 2, 22 = 4, 23 = 8, 24 = 16, 25 = 32, 26 = 64, 27 = 128
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