Directions: This exam has 34 questions, for a total of 100 points. Place your name on the answersheet (last page). Place proofs on the blank space on the answersheet.

- 1. (2 points) An interpretation of RL is a function that does what (indicate all that apply):
 - A. specifies what objects are in the domain.
 - B. assigns truth values to n-place predicate terms followed by n terms.
 - C. for each name in RL it assigns that name one and only one item in \mathcal{D}
 - D. for each n-place predicate term in RL assigns, it assigns that predicate term a set of n-tuples composed of elements from \mathcal{D}
- 2. (2 points) What is a derivation of ψ from Γ using **RD**?
 - A. a finite string of formulas from a set Γ of RL wffs where (i) the last formula in the string is ψ and (ii) each formula is either a premise, an assumption, or is the result of the preceding formulas and the deductive apparatus.
 - B. finite string of wffs starting with some premises Γ and ending with ψ .
 - C. a finite string of wffs starting with some premises Γ or assumptions and ending with ψ .
 - D. an infinite string of wffs starting with some premises Γ or assumptions and ending with ψ .
- 3. (2 points) What does the following mean: $\Gamma \vdash \mathbf{Q}$
 - A. $\Gamma \vdash \mathbf{Q}$ says \mathbf{Q} is a *syntactic* consequence of Γ (meaning that there is a derivation of \mathbf{Q} from Γ).
 - B. $\Gamma \vdash \mathbf{Q}$ says \mathbf{Q} is a *semantic* consequence of Γ (there is no model such that the wffs of Γ are true and \mathbf{Q} is false).
 - C. $\Gamma \vdash \mathbf{Q}$ says \mathbf{Q} is a hypostatic abstraction from Γ
 - D. $\Gamma \vdash \mathbf{Q}$ says \mathbf{Q} intuitively follows from Γ . That is, if you imagine Q in a proof, you can reason to Γ .
- 4. (2 points) Which of the following symbols are RL names (indicate all that apply)?
 - A. ∀
 - B. *b*
 - C. c
 - D. x

Directions: Write any free variables in the following wffs on the line. If there are no free variables, write "none".

- 5. (2 points) Px
- 6. (2 points) Gab
- 7. (2 points) $(\forall x)(\forall y)Gyx$

Directions: Determine whether the following wffs are true or false by using the following model: $\mathcal{D} = \{1, 2, 3, 4, 5\}$, $\mathscr{I}(a) = 1$, $\mathscr{I}(b) = 2$, $\mathscr{I}(c) = 3$, $\mathscr{I}(d) = 4$, $\mathscr{I}(e) = 5$, for all other names α , $\mathscr{I}(\alpha) = 4$, $\mathscr{I}(N) = \{1, 2, 3, 4, 5\}$, $\mathscr{I}(G) = \{\langle 2, 1 \rangle, \langle 3, 2 \rangle, \langle 3, 1 \rangle, \langle 5, 1 \rangle\}$, $\mathscr{I}(I) = \{\}$, $\mathscr{I}(E) = \{2, 4\}$, $\mathscr{I}(O) = \{1, 3, 5\}$

8. (2 points) Ea

11. (2 points) $\neg(\exists y)Oy$

- 9. (2 points) *Od*
- 10. (2 points) $(\forall x)Ex$

12. (2 points) $(\exists x)(Nx \land \neg Ox)$

Directions: Determine whether the following wffs are true or false by using the following model: $\mathcal{D} = \{Tek, Shinji, Lain\}, \, \mathscr{I}(t) = Tek, \, \mathscr{I}(s) = Shinji, \, \mathscr{I}(l) = Lain, \, \text{for all other names } \alpha, \, \mathscr{I}(\alpha) = Shinji, \, \mathscr{I}(Lxy) = \{\langle Tek, Tek \rangle, \langle Tek, Lain \rangle, \langle Lain, Lain \rangle\}, \, \mathscr{I}(Hx) = \{Tek\}$

13. (2 points) $\neg Hs$

16. (2 points) $(\forall x) \neg (Lsx)$

14. (2 points) *Llt*

17. (2 points) $(\exists x)Hx$

15. (2 points) $(\forall x) \neg (Lxs)$

18. (2 points) $(\forall x)(Hx \to Lxx)$

Directions: Translate the wffs below into English using the following key: $\mathcal{D} = \{Tek, Shinji, Lain\}, t = Tek, s = Shinji, l = Lain$, for all other names α , $\alpha = Shinji$, Lxy = x loves y, Hx = x is happy. Rx = x is rich.

19. (2 points) $\neg Hs$

22. (2 points) $\neg(\exists x)Lxs$

20. (2 points) Llt

23. (2 points) $(\exists x)(Hx \land Lxx)$

21. (2 points) $(\forall x)Lxl$

24. (2 points) $(\forall x)(Rx \to Lxx)$

Directions: Writing the abbreviation for the single derivation rule that is represented in the following:

- 25. (2 points) $(\forall z)(Qz \to Qz) \vdash Qc \to Qc$
- 26. (2 points) $Ca \wedge Ca \vdash (\exists z)(Cz \wedge Cz)$
- 27. (2 points) $\neg Qab \vdash (\exists z) \neg Qxb$
- 28. (2 points) From Bb to $(\forall y)By$ provided (1) b is not in a premise or in an assumption of an active subproof and (2) b is not in $(\forall y)By$?
- 29. (2 points) Starting from $(\exists x)Fx$, suppose Fa is assumed. Next, suppose χ is derived in the subproof starting with Fa. Finally, suppose χ is deprived using $(\exists x)Fx$ and the entire subproof.
- 30. (2 points) $\neg(\forall z)Zz \vdash (\exists z)\neg Zz$

Directions: Provide proofs for the following:

- 31. (10 points) Sb, $(\forall x)Qx \vdash (\exists x)Qx$
- 33. (10 points) $Qa \wedge Pa, (\forall x)(Px \rightarrow Mx), (\forall x)Px \vdash (\forall x)Mx$
- 32. (10 points) $\neg Fbb \land Fba \vdash (\exists x)(\exists y) \neg Fxy$
- 34. (10 points) $(\exists x) \neg Wx \vdash (\exists x)(Mx \vee \neg Wx)$

Solutions for exam4/exam4kA

- 1. C, (D)
- 2. A
- 3. A
- 4. B, (C)
- 5. x
- 6. none
- 7. none
- 8. F
- 9. F
- 10. F
- 11. F
- 12. T
- 13. T
- 14. F
- 15. T
- 16. T
- 17. T
- 18. T
- 19. Shinji is not happy.
- 20. Lain loves Tek.
- 21. Everyone loves Lain.
- 22. No one loves Shinji. Also: It is not the case that someone exists that loves Shinji.
- 23. Someone who is happy loves themselves.
- 24. All rich people love themselves.
- 25. $\forall E$
- 26. $\exists I$
- 27. $\exists I$
- 28. $\forall I$
- 29. $\exists E$
- $30. \ QN$
- 31. Sb, $(\forall x)Qx \vdash (\exists y)Qy$
 - 1 Sb
- $2 (\forall x)Qx$
- $P, (\exists y)Qy$
- 3 Qa
- $2, \forall E$
- $4 (\exists y)Qy$
- $3, \exists I$
- 32. $\neg Fbb \wedge Fba \vdash (\exists x)(\exists y) \neg Fxy$
 - 1 $\neg Fbb \wedge Fba$

P, $(\exists x)(\exists y)\neg Fxy$

- $_2$ $\neg Fbb$
- $1 \wedge E$
- (∃y)¬Fby
- $2, \exists I$
- 4 $(\exists x)(\exists y)\neg Fxy$
- $3, \exists I$
- 33. $Qa \wedge Pa, (\forall x)(Px \rightarrow Mx), (\forall x)Px \vdash (\forall x)Mx$
 - 1 $Qa \wedge Pa$
- Р
- $_{2} (\forall x)(Px \rightarrow Mx)$
- P, $(\forall x)Mx$
- $3 (\forall x) Px$ 4 $Pb \rightarrow Mb$
- $2 \ \forall E$
- 5 *Pb*
- $3 \ \forall E$

6 Mb 4,5 $\rightarrow E$

 $7 (\forall x)Mx$ $6 \forall I$

34. $(\exists x) \neg Wx \vdash (\exists x)(Mx \lor \neg Wx)$

1 $(\exists x) \neg Wx$ P, $(\exists x)(Mx \lor \neg Wx)$

 $A = \bigcup \neg Wa$

 $Ma \lor \neg Wa$ $2 \lor I$

 $4 \quad | (\exists x)(Mx \vee \neg Wx) \qquad 3 \; \exists I$

5 $(\exists x)(Mx \lor \neg Wx)$ 1, 2-4 $\exists E$