Date created: 07/26/25

Directions: This exam has 26 questions, for a total of 100 points. Place your name on the answersheet (last page). Place proofs on the blank space on the answersheet.

1 Multiple Choice: Concepts and terminology

- Q1. What is a derivation of ϕ from Γ using **PD**?
 - 1. *A derivation of ϕ is a *finite* string of formulas from a set Γ of **PL** wffs where (i) the last formula in the string is ϕ and (ii) each wff in the set is either a premise, an assumption, or is the result of the preceding wffs and the deductive apparatus.
 - 2. A derivation of ϕ is a finite string of wffs starting with some premises A, B, C, \ldots and ending with ϕ .
 - 3. A derivation of ϕ is a finite string of wffs starting with some premises $\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots$ or assumptions and ending with ϕ .
 - 4. A derivation of ϕ is an *infinite* string of formulas from a set Γ of **PL** wffs where (i) the last formula in the string is ϕ and (ii) each wff in the set is either a premise, an assumption, or is the result of the preceding wffs and the deductive apparatus.
 - Q2. What is a deductive apparatus for **PL**?
 - 1. It is a set of rules that allow individuals to reason from facts (experience) to general laws, e.g. laws of nature.
 - 2. It is a set of rules of reason that all people use to reason from one proposition to another, including, but not limited to, hypothetical and probabilistic reasoning.
 - 3. a set of rules that state that the rows in a proof need to be numbered.
 - 4. *a set of derivation rules that express which wffs ϕ can be written after which wffs ψ in a derivation.
- Q3. In logic, there are two notions of logical consequence (entailment). The first notion is the semantic (model-theoretic) notion, which says that ϕ is a logical consequence of Γ if and only if there is no interpretation of the members of Γ and ϕ such that all of the members of Γ are true and ϕ is false. What is the other notion of logical consequence?
 - 1. the semi-semantic notion of logical consequence (entailment). This notion says that ϕ is a semi-semantic consequence of Γ if and only if it is impossible for the premises to be true and the conclusion false, defined in terms of truth tables and trees.
 - 2. the intuitive notion of logical consequence (entailment). This notion says that ϕ is a logical consequence of Γ if and only if ϕ intuitively follows from Γ
 - 3. the legal notion of logical consequence (entailment). This notion says that ϕ is a logical consequence of Γ if and only if ϕ would be accepted in a court of law or some practical matter.
 - 4. *the syntactic (proof-theoretic) notion of logical consequence (entailment). This notion says that ϕ is a logical consequence of Γ if and only if there is a derivation of ϕ from Γ
 - 5. none of the above

Directions: Write the abbreviation of the derivation rule that permits the step in the proof below.

- Q4. From X to X Answer: R
- Q5. From $A \wedge X$ to X Answer: $\wedge E$
- Q6. From $\neg A$ and B to $\neg A \land B$ Answer: $\land I$
- Q7. From $\neg \neg B \wedge \neg X$ to $\neg \neg B$ Answer: $\wedge E$


```
Q8. From Z \to M and \neg Q to (Z \to M) \land \neg Q — Answer: \land I
```

- Q9. From $\neg Q \to S$ and $\neg Q$ to S. Answer: $\to E$
- Q10. From $(B \to Q) \leftrightarrow M$ and M to $B \to Q$ Answer: $\leftrightarrow E$
- Q11. From $S \to L$ and $\neg L$ to $\neg S$ Answer: MT
- Q12. From $X \to \neg Z$ and $\neg Z \to M$ to $X \to M$ Answer: HS
- Q13. From $S \wedge T$ to $X \vee (S \wedge T)$ Answer: $\vee I$
- Q14. From $V \vee P$ and $\neg P$ to V Answer: DS
- Q15. From $A \to B$ to $\neg A \lor B$ Answer: IMP
- Q16. From $\neg (A \lor B)$ to $\neg A \land \neg B$ Answer: DeM
- Q17. From W to $\neg\neg W$ Answer: DN
- Q18. What rule allows you to derive $\neg A$ from (1) an assumption A and (2) B and $\neg B$ within the subproof started by A? Answer: $\neg I$
- Q19. What derivation rule is best described as follows: if $(P \to Q) \land Q$ is on a line of the proof, then it is legitimate to derive $P \to Q$ on a line and it is legitimate to derive Q on another line. Answer: $\land E$
- Q20. From $A \vee B$ and two subproofs C is derived. The first subproof is where A is assumed and C is derived. The second subproof is where B is assumed and C is derived. Answer: $\vee E$

2 Proofs

Directions: Solve the following proofs. Be sure to setup the proof correctly, number all lines, and clearly indicate how each line is justified using the rules from the deductive apparatus.

Q21.
$$(A \land \neg W) \land \neg S, T \land \neg R, S \lor R \vdash \neg W \land \neg R$$
— Answer: $(A \land \neg W) \land \neg S, T \land \neg R, S \lor R \vdash \neg W \land \neg R$

1 $(A \land \neg W) \land \neg S$ P

2 $T \land \neg R$ P

3 $S \lor R$ P, $\neg W \land \neg R$

4 $\neg R$ $\land E, 2$

5 $A \land \neg W$ $\land E, 1$

6 $\neg W$ $\land E, 5$

7 $\neg W \land \neg R$ $\land I, 6, 4$

Q22. $(P \lor \neg W) \rightarrow \neg B, \neg W \vdash \neg L \lor \neg B$
— Answer: $(P \lor \neg W) \rightarrow \neg B, \neg W \vdash \neg L \lor \neg B$

1 $(P \lor \neg W) \rightarrow \neg B$ P, $\neg L \lor \neg B$

2 $\neg W$ P

3 $P \lor \neg W$ $\lor I, 2$

4 $\neg B$ $\rightarrow E, 1, 3$

5 $\neg L \lor \neg B$ $\lor I, 4$

Q23. $W \rightarrow D, \neg C \rightarrow D, W \lor \neg C \vdash \neg \neg D$
— Answer: $W \rightarrow D, \neg C \rightarrow D, W \lor \neg C \vdash \neg \neg D$

1 $W \rightarrow D$ P

2 $\neg C \rightarrow D$ P

3 $W \lor \neg C$ P, $\neg \neg D$

4 $W \land A$

5 $D \rightarrow E, 1, 4$

6 $\neg C$ A

D

 $\rightarrow E$, 2.6

8
$$D$$
 $\lor E$ 3, 4-5, 6-7
9 $\neg\neg D$ DN 8
 $Q24. B \leftrightarrow \neg B \vdash \neg (A \lor C)$
 $-$ Answer: $B \leftrightarrow \neg B \vdash \neg (A \lor C)$
1 $B \leftrightarrow \neg B$ P
2 $|B|$ A
3 $|\neg B|$ $\leftrightarrow E$ 1,2
4 $|B|$ R 2
5 $\neg B$ $\neg I$ 2-4
6 $|A \lor C|$ A
7 $|\neg B|$ R , 5
8 $|B|$ $\leftrightarrow E$ 7, 1
9 $\neg (A \lor C)$ $\neg I$, 6-8
 $Q25. \vdash \neg (W \to Q) \to \neg Q$
 $-$ Answer: $\vdash \neg (W \to Q) \to \neg Q$
1 $|\neg (W \to Q)|$ A
2 $|\neg (W \lor Q)|$ IMP , 1
3 $|\neg W \land \neg Q|$ DeM , 2
4 $|\neg Q|$ $\land E$, 3
5 $\neg (W \to Q) \to \neg Q$ $\Rightarrow I$, 1-4
 $Q26. \vdash \neg (P \lor Q) \to (R \to \neg Q)$
 $-$ Answer: $\vdash \neg (P \lor Q) \to (R \to \neg Q)$
1 $|\neg (P \lor Q)|$ A
2 $|R|$ A
3 $|\neg P \land \neg Q|$ DeM , 1
4 $|\neg Q|$ $\land E$, 3
5 $|R \to Q|$ $\Rightarrow I$, 2-4

 $6 \neg (P \lor Q) \to (R \to Q)$

 $\rightarrow I$, 1-5

$Solutions \ for \ exam 3/exam 3 qA$

