
Columnar Transposition Cipher: An Introduction

David W. Agler

November 29, 2023

Columnar Transposition Cipher
The columnar transposition cipher is a type of transposition cipher. A transposi-
tion cipher is a method of encryption that involves (rather than the substitution
of one letter for another) the rearrangement of the plaintext into ciphertext.
More plainly, transposition ciphers simply mix up the order, arrangement, or
presentation of the letters to get the ciphertext. In what follows, I’ll provide
a brief introduction to one of the simplest forms of transposition ciphers: the
columnar transposition cipher.

Columnar Transposition
Let’s start with an example. Take the plaintext “ABCD” and put it in a grid
(or table) of two columns. We will write the plaintext in the grid from left to
right and top to bottom. Here is the result:

1 2
A B
C D

We can say we have a geometrical figure: a rectangle. Next, let’s use this
rectangle to create our ciphertext. Instead of reading from left to right and
top to bottom, let’s read from top to bottom and left to right. This gives us
“ACBD”. This is our ciphertext.

A few things to note. First, we did not substitute any letters in our plaintext.
Rather, we simply rearranged or transposed the letters. Second, note that the
length of the plaintext and the ciphertext is the same. Third, in our example,
we put the plaintext in a grid that has 2 columns. But consider that, with
different plaintext, we might have chosen a different number of columns. Let’s
illustrate this with an example. Suppose we want to send that special someone
the following message “I love you”. We could, like we did in the previous example,
put this plaintext in a grid with 2 columns like this (leaving the cell blank if
there is no letter to fill it):

1

Columnar Transposition Agler - 2

1 2
I
l o
v e

y
o u

This would give us the ciphertext “Ilv o oeyu”. But, we could have also put the
plaintext in a grid with 3 columns like this:

1 2 3
I l
o v e

y o
u

Here our ciphertext is “Io u vyleo”. The number of columns we choose is the
key. In the first example, the key is 2. In the second example, the key is 3.

1 2 3 4 5 6 7 8 9 10
Plaintext I l o v e y o u
Key 2 I l v o o e y u
Key 3 I o u v y l e o

Again, notice that in both cases, the length of the plaintext and the ciphertext
is the same.

Now that our special someone has our ciphertext message, how do they decrypt
it to get our message? Or, suppose we are given the ciphertext “HlWleoodl r”
and a key of 3. How would we decrypt this message? Gaines gives the following
instruction: “if the encipherer [. . .] has written the text in rows and taken it off
by columns, then the decipherer must do the reverse: write his text by columns
and take it off by rows” (Cryptanalysis, p.14). Let’s put this in a punchier way:

1. Encipherment by rows, then columns.
2. Decipherment by columns, then rows.

Since we know the key is 3, we can create a table with 3 columns and write
the ciphertext from top to bottom and left to right. As the first three letters of
“HlWleoodl r” are “HlW”, we would start by writing “HlW” from the top to the
bottom in the first column.

1 2 3
H . .
l . .
W . .

Columnar Transposition Agler - 3

But as we begin writing from top to bottom, a problem arises. How many
rows down do we go? We can figure this out by dividing the length of the
ciphertext by the length of the key and rounding up. In our case, the length of
the ciphertext “HlWleoodl r” is 11 and the length of the key is 3. So, we have
11/3 = 4 (rounding up). So, our table should have 3 columns (from the key) and
4 rows. Let’s complete our table using “HlWleoodl r”:

1 2 3
H e l
l o
W o r
l d

With our table created, we get the plaintext by reading the letters from the table
from left to right and top to bottom. In our case, the plaintext is “Hello World”.

Thus far, our approach to encryption has been to read the grid from left to right
and top to bottom. But, it is worth pointing out several other variations. First,
we could have performed the encryption by reading the grid from top to bottom
and right to left. Or, we could have read the grid using a snake pattern, starting
in the first column, reading downward, moving to the right, then bottom to top.
Another common approach is to use a keyword that is the length of the key
and have some feature of the keyword to guide the order in which the columns
should be read. For example, suppose we use the keyword “SUNDAY” (a key
length of 7) to encrypt the message “Tomorrow is the day we attack.” We would
start by writing the keyword “SUNDAY” at the top of our grid and write the
plaintext in the normal way.

S U N D A Y
4 5 3 2 1 6
T o m o r r
o w i s
t h e d a
y w e a
t t a c k .

Finally, rather than starting with the upperleft corner, a number (corresponding
to the character’s position in the alphabet) is used to determine the order in
which the columns should be selected to construct the ciphertext. In the example
above, we read from top to bottom starting under “A” (1), then “D” (2), then
“N” (3) and so on. The ciphertext is “rsd koi ecm ewaTotytowh tr aa.”

In this section, we considered a simple case of a transposition cipher: the
columnar transposition cipher. We took plaintext and turned it into ciphertext
by creating a grid, writing the plaintext horizontally in the grid, then extracting
the ciphertext by reading vertically. Our process of decryption was essentially
the reverse: we wrote the ciphertext vertically, then extracted the plaintext

Python Implementation Agler - 4

by reading the grid horizontally. In the next section, we’ll consider how to
implement the columnar transposition cipher in Python.

Python Implementation
In this section, we’ll focus on how to encrypt plaintext using the columnar
transposition cipher in Python before examining how to decrypt the ciphertext. In
looking at encryption, we’ll consider two different ways to implement the columnar
transposition cipher, one involves creating the grid (and closely following how
we might create the ciphertext by hand) and the other using a list of strings.

Encryption Method 1: The Intuitive Method

One way to implement the columnar transposition cipher in Python is to create it
just like we did by hand. We’ll start by creating a function that takes plaintext
and key as arguments. Then, we’ll simply create a list filled with strings. The
length of the string will be the number of columns and each string in the list
will be a row in our grid. What we want is something like this:

def grid_create(plaintext, key):
grid = [] # empty list
Start at 0 and get key length num of chars
Append chars to grid
Skip the length of the key
get the next char a key length from 0
return grid

print(grid_create("Hello World", 3))
['Hel', 'lo ', 'Wor', 'ld']

What we don’t want to do is loop over each item in the plaintext. Instead, if
our key is 3, we want indices 0 (get 3 chars), move to index 3 (get 3 chars), and
so on until we reach the end of the plaintext. To accomplish this, let’s use a for
loop. We’ll start at 0 and stop at the end of plaintext. We also want to skip
the length of the key.

def grid_create(plaintext, key):
grid = []
for i in range(0, len(plaintext), key):

Append chars to grid
return grid

print(grid_create("Hello World", 3))
['Hel', 'lo ', 'Wor', 'ld']

So, in the above, if the length of the plaintext is 11 and the length of the key
is 3, then we will loop through the range of 0 to 11 in increments of 3. That is,
we will loop through 0, 3, 6, 9. Note that 0, 3, 6, 9 are not our columns. The

Python Implementation Agler - 5

columns are specified by the key. The rows are specified by whatever number of
loops our range has. So, in the above, we will loop through the range of 0 to 11
in increments of 3. This will give us 4 loops. So, we will have 4 rows.

All this leaves us is to append the characters to the grid on each loop. We can
do this by appending the plaintext at index i to the plaintext at index i
plus the length of the key (3).

def grid_create(plaintext, key):
grid = []
for i in range(0, len(plaintext), key):

grid.append(plaintext[i:i+key])
return grid

print(grid_create("Hello World", 3))
['Hel', 'lo ', 'Wor', 'ld']

Let’s describe the first two iterations of the loop:

1. The first iteration of starts with 0. To the grid, characters from index 0
to index 3 (indices 0, 1, 2) are appended. The grid is now ['Hel']. This
is the first row of the grid. Column 1 is ‘H’, column 2 is ‘e’, and column 3
is ‘l’.

2. The second iteration of the loop starts with 3. To the grid, characters
from index 3 to index 6 (indices 3, 4, 5) are appended. The grid is now
[‘Hel’, ‘lo’]. This is the second row of the grid. Column 1 is ‘l’, column 2 is
‘o’, and column 3 is an empty space.

This is exactly what we want. It looks just like the grid we created by hand.

1 2 3
H e l
l o
W o r
l d

The first step in our encryption is complete. We have created the grid. The
next step is to read the grid and create the ciphertext. To do this, we will
create a variable called ciphertext and set it to an empty string. Writing the
plaintext to the grid involved writing the plaintext from left to right and
top to bottom. To create the ciphertext, we want to read the grid from top to
bottom and left to right. Since our grid is a list of strings, and each character
in the string represents a column, we want to go string by string, getting the i
index character from each string. So, we want to add the first letter of each item
in the grid to the ciphertext, then the second letter of each item in the grid to
the ciphertext, and so on. To illustrate, let’s say our grid is the following:

grid = ['Hel', 'lo ', 'Wor', 'ld']

Python Implementation Agler - 6

We want to create ciphertext string in the following way:

Index Character
0 H
0 l
0 W
0 l
1 e
1 o
1 o
1 d
2 l
2
2 r

How do we do this? First, let’s create ciphertext, which is an empty string to
store our ciphertext. Next, let’s add a col variable. The col is used to keep
track of what column we are in. We will increment when we need to move to
the next column.

def columnar_encrypt(plaintext, key):
ciphertext = ''
earlier grid code that constructs the grid
col = 0

go col by col and get the i index char from each string
add that char to ciphertext

col += 1
return ciphertext

Let’s add a while loop that will loop until col is greater than length of the key.
The idea here is that we want to loop through the index of each column and
we want to stop once there are no more columns. Since the key is equal to the
number of columns, we can stop the while function when the col>key.

def columnar_encrypt(plaintext, key):
ciphertext = ''
early grid code
col = 0
while col < key:

go col by col and get the i index char from each string
add that char to ciphertext

col += 1
return ciphertext

Next, we want to loop through each string (row) in the grid. We can do this
by using for loop on the items in the grid. During the loop, we will add the
character at the index of the col to the ciphertext.

Python Implementation Agler - 7

def columnar_encrypt(plaintext, key):
ciphertext = ''
grid = []
for i in range(0, len(plaintext), key):

grid.append(plaintext[i:i+key])
col = 0
while col < key:

for row in grid:
ciphertext = ciphertext + row[col]

col += 1
return ciphertext

Let’s test our function.

print(columnar_encrypt("Hello World!", 3))
HlWleoodl r!
print(columnar_encrypt("ABCDEFGHIJK", 3))
Error!

While our function works for some plaintext, it doesn’t work for others. To
see why, here is our grid for “ABCDEFGHIJK”: [‘ABC’, ‘DEF’, ‘GHI’, ‘JK’].
Putting this in our handy table, we get the following:

0 1 2
A B C
D E F
G H I
J K

What we expect then is the following ciphertext “ADGJBEHKCFI”. But, when
we run our function, we get an error. Why? As the function writes the ciphertext,
remember it is writing it from top to bottom and left to right. But notice that
when row=4, there is no item in col=2. So, when the function tries to add
row[4][2] to the ciphertext, it will return an error stating that the string
index is out of range. To illustrate, if we print ciphertext immediately after
we add the character to it, we see it will print the ciphertext and the error will
occur on the next loop.

Col Ciphertext
0 A
0 AD
0 ADG
0 ADGJ
1 ADGJB
1 ADGJBE
1 ADGJBEH
1 ADGJBEHK

Python Implementation Agler - 8

Col Ciphertext
2 ADGJBEHKC
2 ADGJBEHKCF
2 ADGJBEHKCFI
2 ERROR!

The fundamental problem is that the col index is greater than the number of
characters in the string. So, let’s simply add an if statement that checks to see
if the col index number is less than the length of the string (row). If it is, then
we’ll add the character at row[col] to the ciphertext. If it isn’t, then we’ll
break out of the loop. Alternatively, we can simply add a dummy character to
our ciphertext.

def columnar_encrypt(plaintext, key):
ciphertext = ''
grid = []
for i in range(0, len(plaintext), key):

grid.append(plaintext[i:i+key])
col = 0
while col < key:

for row in grid:
if col < len(row):

ciphertext = ciphertext + row[col]
else:

break # alt: ciphertext += '*'
col += 1

return ciphertext

Let’s test this function with a few examples.

print(columnar_encrypt("Run, they are coming", 2))
Rn hyaecmnu,te r oig
print(columnar_encrypt("ABCDEFG", 3))
Hore llWdlo
print(columnar_encrypt("ABCDEFGHIJK", 3))
ADGJBEHKCFI

In this section, we implemented the columnar transposition cipher by taking
plaintext and writing it to a grid (columns and rows). We wrote the plaintext
in a grid left to right and top to bottom by appending to a list strings from the
plaintext the size of the key (which stand for the number of columns of the grid).
In doing so, we let each character in the string represent a column, and each
string in the list represent a row. The next step was to create a column variable
col that we used as an index to extract characters from each column. In doing
this, we were able to read the strings from top to bottom and left to right.

Python Implementation Agler - 9

Encryption Method 2: Using a List of Strings

Let’s consider another way to implement the encryption. This time, we will
create a list of strings called ciphertext that will represent the columns of the
grid. First, we will make the number of columns equal to the length of the key.

def columnar_encrypt2(plaintext, key):
ciphertext = [''] * key

If our key is 3, then printing the ciphertext above will return a list of 3 empty
strings ['', '', '']. Next, the plan is to loop through each of these columns,
taking text from plaintext and adding it to each of the items (columns) in the
list. To do this, let’s create a for loop that will loop through the range of the
key. If our key is 3, then the range will be 0, 1, 2. We will use the variable col
to represent each column.

def columnar_encrypt2(plaintext, key):
ciphertext = [''] * key
for col in range(key):

Next, what we want to add text to each item (column) in the list by looping
through plaintext. If our plaintext is Hello World and our key is 3, then we
want to add the first letter of plaintext to the ciphertext at index 0. After
that, we want to move down plaintext the length of the key (3) and add the
next letter to the ciphertext at index 3, and so on. We want to do this until
we get to the end of the plaintext.

0 1 2 3 4 5 6 7 8 9 10
H e l l o W o r l d

Taking every third letter, we get HlWl.

0 1 2 3 4 5 6 7 8 9 10
H l W l

So, how do we do this? One thought is to declare a variable i, set it to 0 (i=0),
then loop through plaintext. We can then just add the character at index i to
the ciphertext. We’ll then increment it by the length of the key (3) to i until
we get to the end of the plaintext. The problem with this is that (1) it will
only loop once and (2) each loop will start at 0 return the same string HlWl.

So, instead, let’s set i to the column number i = col. This way, we will
start at 0, then 1, then 2, and so on. In addition, we’ll say that while i <
len(plaintext), we want to add the character at index i to the ciphertext
at index col. Since col starts at 0, the first column, we’ll complete the entire
first column before moving to the second column.

def columnar_encryptB(plaintext, key):
ciphertext = [''] * key

Python Implementation Agler - 10

for col in range(key):
i = col
while i < len(plaintext):

ciphertext[col] += plaintext[i]
i = i + key

return # ciphertext

Let’s say our plaintext is ‘ABCDEFGHIJK’ and our key is 3. Here is how the
function should build the ciphertext:

Col (index) Ciphertext
0 [‘A’, ‘ ’, ‘ ’]
0 [‘AD’, ‘ ’, ‘ ’]
0 [‘ADG’, ‘ ’, ‘ ’]
0 [‘ADGJ’, ‘ ’, ‘ ’]
1 [‘ADGJ’, ‘B’, ‘ ’]
1 [‘ADGJ’, ‘BE’, ‘ ’]
1 [‘ADGJ’, ‘BEH’, ‘ ’]
1 [‘ADGJ’, ‘BEHK’, ‘ ’]
2 [‘ADGJ’, ‘BEHK’, ‘C’]
2 [‘ADGJ’, ‘BEHK’, ‘CF’]
2 [‘ADGJ’, ‘BEHK’, ‘CFI’]

Finally, we want to return the ciphertext. If we were to return it as is, then
we would return a list of strings. Since we would rather return a string, we can
use the join method to join the strings in the list.

def columnar_encryptB(plaintext, key):
ciphertext = [''] * key
for col in range(key):

i = col
while i < len(plaintext):

ciphertext[col] += plaintext[i]
i = i + key

return ''.join(ciphertext)

Let’s test our function.

print(columnar_encryptB("ABCDEFGHIJK", 3))
ADGJBEHKCFI
print(columnar_encryptB("Hello World", 4))
Hore llWdlo
print(columnar_encryptB("Run, they are coming", 2))
Rn hyaecmnu,te r oig

Python Implementation Agler - 11

Decryption Using Python

Now that we have two functions to encrypt plaintext using the columnar trans-
position cipher, let’s consider how to decrypt the ciphertext. To do this, we will
create a function called columnar_decrypt that takes ciphertext and key as
arguments and returns the plaintext.

def columnar_decrypt(ciphertext, key)
plaintext = ""
return # plaintext

Recall the general strategy noted by Gaines on how to decrypt the columnar
cipher: “if the encipherer [. . .] has written the text in rows and taken it off by
columns, then the decipherer must do the reverse: write his text by columns and
take it off by rows” (Cryptanalysis, p.14). Let’s try this approach. First, we are
faced with some ciphertext “ADGJBEHKCFI” and given a key 3. Second, we
are to write the ciphertext from top to bottom and left to right.

0 1 2
A
D
.
.

As we begin writing, recall that we need to know the number of rows. To get the
number of rows, we can divide the length of the ciphertext by the length of the
key and round up. At this point, we could fill out the grid by hand as follows:

0 1 2
A B C
D E F
G H I
J K

In Python, we can import that math module and use the ceil function to round
up.

import math
def columnar_decrypt(ciphertext, key):

plaintext = ""
rows = math.ceil(len(ciphertext)/key)
return #plaintext

Next, since we know the number of rows, we can iterate through the range of
the number of rows. Each time we iterate, we want to start at the index of the
row, get every rows number of characters, and then write it to the plaintext.

import math
def columnar_decrypt(ciphertext, key):

References and Further Reading Agler - 12

plaintext = ""
rows = math.ceil(len(ciphertext)/key)
for row in range(rows):

plaintext += ciphertext[row:len(ciphertext):rows]
return plaintext

The reason we want every rows number of characters is because each character
between that number will be written in the same column. Let’s test our function.

print(columnar_decrypt("ADGJBEHKCFI", 3))
ABCDEFGHIJK
print(columnar_decrypt("HlWleoodl r", 3))
Hello World
print(columnar_decrypt("Rn hyaecmnu,te r oig", 2))
Run, they are coming

References and Further Reading
1. Gaines, Helen Fouché. Cryptanalysis: A Study of Ciphers and Their

Solution. New York: Dover Publications, 1956.
2. Sweigart, Al. Cracking Codes with Python: An Introduction to Building

and Breaking Ciphers. San Francisco: No Starch Press, 2018.
3. Christensen, Chris. 2015. Columnar Transposition.
4. Neso Academy. 2021. Row Column Transposition Ciphering Technique
5. George Lasry, Nils Kopal & Arno Wacker (2014) Solving the Double

Transposition Challenge with a Divide-and-Conquer Approach, Cryptologia,
38:3, 197-214, DOI: 10.1080/01611194.2014.915269

6. George Lasry, Nils Kopal & Arno Wacker (2016) Cryptanalysis of columnar
transposition cipher with long keys, Cryptologia, 40:4, 374-398, DOI:
10.1080/01611194.2015.1087074

7. Goodin, Dan. 2020. Zociac Killer cipher is cracked after eluding sleuths
for 51 years. Ars Technica

8. For a more powerful Python implementation, see CrypTool-Online. Simple
Column Transposition. https://www.cryptool.org/en/cto/transposition

https://www.nku.edu/~christensen/1402%20Columnar%20transposition.pdf
https://www.youtube.com/watch?v=cPQXaYUMOjQ
1080/01611194.2014.915269
10.1080/01611194.2015.1087074
https://arstechnica.com/information-technology/2020/12/zodiac-killer-cipher-is-cracked-after-eluding-sleuths-for-51-years/
https://www.cryptool.org/en/cto/transposition

	Columnar Transposition Cipher
	Columnar Transposition
	Python Implementation
	Encryption Method 1: The Intuitive Method
	Encryption Method 2: Using a List of Strings
	Decryption Using Python

	References and Further Reading

