
Handout 8

RL Derivations

In this chapter, we specify a deductive apparatus for RL.

Definition – deductive apparatus

A deductive apparatus for RL is a set of rules of derivation (or “inference”
rules) that express which wffs Q can be written after which wffs P in a
derivation. The deductive apparatus for RL is hereafter abbreviated as
RD.

Definition – derivation of Q in RD

A derivation in PD of Q is a finite (not infinite and not empty) string of
formulas from a set Γ of RL wffs where (i) the last formula in the string
is Q and (ii) each formula is either a premise, an assumption, or is the
result of the preceding formulas and the deductive apparatus.

In this handout, we add to the existing intelim rules formulated for PD with a
set of intelim rules for quantified expressions. In addition, we present derivations
vertically, number each wff in the derivation, and make use of vertical lines to
indicate the scope of any assumptions that are made. In addition, each wff in
the derivation is justified by citing both a rule from PD and the line numbers
of the wffs that are necessary for the application of said rule.

If there is a derivation for a wff Q from a set of wffs Γ, then we say that Q is a
syntactic consequence (or syntactically entailed by) Γ.

Definition – syntactic consequence

A formula Q is a syntactic consequence in RD of a set Γ of RL wffs if
and only if there is a derivation in RD of Q from Γ. To express that Q
is a syntactic consequence of Γ, we write Γ ` Q.
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8.1 Predicate Derivations: Four Quantifier Rules

The proof system for RL is RD, which consists of PD+ (the proof system
from propositional logic) and four new additional derivation rules for quantified
formulas.

Derivation Rule – Universal Elimination (∀E)

From any universally quantified proposition (∀x)P , we can derive a sub-
stitution instance P (a/x) in which all bound variables are consistently
replaced with names.

(∀x)P ` P (a/x)

The idea is that if you have a universally quantified proposition (∀x)P , you can
move forward a step in the proof with a proposition P (a/x) that is the result of
removing the universal quantifier and replacing any bound variables with any
name of your choosing.

Example 3:

1 (∀x)Px P
2 Pa ∀E, 1
3 Pb ∀E, 1
4 Pe ∀E, 1

When using ∀E, replacement of variables with names must be uniform.

Example 4:

1 (∀x)Rxx P
2 Raa ∀E, 1
3 Rbb ∀E, 1
4 Rab ∀E, NO!, 1

Derivation Rule – Existential Introduction (∃I)

From any possible substitution instance P (a/x), an existentially quanti-
fied proposition (∃x)P can be derived by consistently replacing at least
one individual constant (name) with an existentially quantified variable.

P (a/x) ` (∃x)P
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The idea is that if you have a non-quantified proposition Pa, you can move for-
ward a step in the proof with an existentially quantified proposition (∃x)P (x/a)
that is the result of uniformly replacing at least one name with an existentially
quantified bound variable.

Example 5:

1 Pa P
2 Rbb P
3 (∃x)Px ∃I, 1
4 (∃x)Rxx ∃I, 2

When using ∃I, replacement of variables with names must be uniform but
you need only replace one name.

Example 6:

1 Lab P
2 Rbb P
3 (∃x)Lax ∃I, 1
4 (∃x)Lxb ∃I, 1
5 (∃x)Lxx 1∃I, NO!, 1
6 (∃x)Rxx ∃I, OK!, 2
7 (∃x)Rbx 2∃I, OK!, 2

Exercise 1: Focusing on ∀E and ∃I, solve the following proofs.

1. Paa→ Rbb, Pbb→ Rcc, (∀x)Pxx ` Rbb ∧Rcc
2. (∃x)Rx→ (∃x)Mx,Ra ` (∃x)Mx
3. Pab, (∃x)(∃y)Pxy → (∀x)Zxx ` Zaa
4. (∀x)(∀y)Pxy, Paa→ Lab ` (∃y)(∃x)Lxy

Derivation Rule – Universal Introduction (∀I)

A universally quantified proposition (∀x)P can be derived from P (a/x)
provided (1) a does not occur as a premise or as an assumption in an open
subproof, and (2) a does not occur in (∀x)P .

P (a/x) ` (∀x)P (when a does not occur as premise, open subproof, or in
(∀x)P .

The idea is that if you have a non-quantified proposition Pa, you can move for-
ward a step in the proof with a universally quantified proposition (∀x)P (x/a)
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that is the result of uniformly replacing each name with universally quantified
bound variables. However, there are two restrictions you must be mindful of:
(1) the names cannot occur in the premises or as the assumption in an open sub-
proof and (2) the names cannot occur in the universally quantified proposition
(∀x)P (x/a) derived.

Example 7:

1 (∀x)Pxx P
2 Paa ∀E, 1
3 (∀y)Pyy ∀I, 2

Example 8:

1 Raa A

2 Raa R, 1

3 Raa→ Raa → I, 1–2
4 (∀x)(Rxx→ Rxx) ∀I, 3

In the above example, (∀I) is applied to line 3 even though ‘a’ is in the assump-
tion. However, the subproof involving ‘a’ is no longer open.

Example 9: Violation of Restriction #1

1 Laa P
2 (∀x)Lxx ∀I, 1

Example 10: Second Violation of Restriction #1

1 Laa A

2 (∀x)Lxx ∀I, NO!, 1

Example 11: Violation of Restriction #2

1 (∀x)Pxx P
2 Paa ∀I, 1
3 (∀y)Pya ∀I, NO!, 2
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Derivation Rule – Existential Elimination (∃E)

From an existentially quantified expression (∃x)P , an expression Q can be
derived from the derivation of an assumed substitution instance P (a/x)
of (∃x)P provided (1) the individuating constant a does not occur in
any premise or in an active proof (or subproof) prior to its arbitrary
introduction in the assumption P (a/x) and (2) the individuating constant
a does not occur in proposition Q discharged from the subproof.

1 (∃x)P P

n P(a/x) A
...

...

(n + 1) Q

(k) Q ∃E, 1, n–(n + 1)

The idea is that if you have an existentially quantified proposition (∃x)P, you
can derive Q provided you assume P(a/x) then derive Q with that subproof.
However, this derivation is only permitted when (1) ‘a’ from P (a/x) does not
occur in the premises or an active proof and (2) ‘a’ from P (a/x) does not occur
in Q.

Example 12:

1 (∃x)Px P

2 Pa A

3 (∃y)Py ∃I, 2

4 (∃y)Py ∃E, 1, 2–3

Example 13: Violation of Restriction #1

1 (∃z)Wzz P
2 Wbb→ Lc P

3 Wbb A

4 Lc → E, 2, 3

5 Lc ∃E, NO!, 1, 3–4
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Example 14: Violation of Restriction #1

1 (∀z)(Pzz → Lzz) P
2 (∃z)Pzz P

3 Pbb→Wcc A

4 Pbb A

5 Wcc → E, 3, 5

5Wcc

Example 15: Violation of Restriction #2

1 (∃z)Wzz P

2 Wbb A

3 (∃x)Wbx ∃I, 2

4 (∃x)Wbx ∃E, NO!, 1, 2–3

Exercise 2: Solve the following proofs. In doing so, keep in mind that
you may have to use any of the four derivation rules from RD.

1. (∀x)(∀y)Lxy, (∀x)Lxx→ (∃x)(∃y)Lxy ` (∃x)(∃y)Lxy
2. (∃x)Pxx ` (∃x)(Pxx ∨Rx)
3. (∃x)(∃y)Pxy ` (∃y)(∃z)Pyz
4. (∀x)(Pxx→ Pxx)→ Sa ` Sa
5. (∀x)(Pxx→ Pxx)→ (∃x)Mx ` (∃x)(Mx ∧Mx)
6. (∃x)(∃y)(∃z)(Lxy ∧ Lyz), (∃x)(∃y)Lxy → (∀z)(∀y)Pzy ` (∀x)Pxx

8.1.1 Quantifier Negation (QN)

In addition to the four introduction and elimination rules for quantified propo-
sitions, we can add to RD an equivalence rule (or rule of replacement). This
rule, known as Quantifier Negation, allows us to replace negated quantified sub-
formulas with non-negated quantified subformulas, and vice versa.

Derivation Rule – Quantifier Negation (QN)

From a negated universally quantified expression ¬(∀x)P , an existentially
quantified expression (∃x)¬P can be derived, and vice versa. Also, from
a negated existentially quantified expression ¬(∃x)P , a universally quan-
tified expression (∀x)¬P can be inferred, and vice versa.

¬(∀x)P a` (∃x)¬P
¬(∃x)P a` (∀x)¬P
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Example 1: of QN

1 ¬(∀x)Px P
2 (∃x)¬Px QN , 1
3 ¬(∀x)Px QN , 2

Since (QN) is a rule of replacement, it can be applied to subformula of
wffs.

Example 2: of QN

1 ¬(∀x)Px→ Pa P
2 (∃x)¬Px→ Pa QN , 1

Notice that QN is applied to the antecedent of line 1.

Exercise 3: Using QN and the other four derivation rules, solve the
following proofs.

1. (∀x)Pxx→ (∃x)Rx, (∀x)¬Rx ` (∃x)¬Pxx
2. (∀x)¬(∃y)Pxy → (∀x)Zx, (∀x)(∀y)¬Pxy ` (∀x)Zx
3. ¬(∃x)(∃y)Pxy, (∀x)(∀y)¬Pxy → (∀z)Zz ` (∀z)Zz
4. ¬(∀x)Px ` (∃x)(¬Px ∨ Zx)
5. ¬(∀x)(∀z)Pxz, (∃x)(∃z)¬Pxz → (∀z)Lz ` (∀w)(Lw ∨Mw)
6. ` (∃x)Px→ (∀x)(Px→ Px)




