
Handout 4

PL: Truth Trees

Truth tables provide a mechanical method for determining whether a propo-
sition, set of propositions, or argument has a particular logical property. For
example, we can show that an argument is deductively valid (or invalid) using
the truth-table method. The problem with truth tables is that they are cumber-
some when dealing with formulas that have more than two propositional letters.
While a truth table for a proposition with two propositional letters only has four
rows, a truth table for a proposition with three propositional letters has eight,
a proposition with four letters has sixteen, and so on.

In this lesson, an alternative decision procedure is articulated. This is the truth-
tree method. The advantage of truth trees is that it is a decision procedure
whose complexity is not a function of the number of propositional letters in the
formula being analyzed. And, as we will see later, the method is capable of
being adapted to a more expressive logical language.

4.1 Truth Trees: The Setup

Truth trees first begin with an initial setup involving three columns:

1. for numbering the propositions,
2. writing (stacking) the propositions,
3. justification of propositions.

To illustrate, consider the following two propositions: P ∧R,M ∧ ¬P

column 1 column 2 column 3

1 P ∧R P
2 M ∧ ¬P P

Table 4.1 – Setting up a truth tree: putting the propositions in
a stack

44 PL: Truth Trees

In Ch.4 of Agler’s Symbolic Logic, there is special attention paid to making
sure that all trees cite the justification of each of the rows of the tree. In this
handout, much of the justification for trees is not provided.

4.2 Truth Trees: Some Basics in Decomposition
(introducing ∧D)

Next, propositions are decomposed (broken apart) according to the conditions
under which they are true. Decomposition occurs by applying specific decom-
position rules. There are 9 decomposition rules, each applying to a specific type
of decomposable proposition (see Agler Symbolic Logic, p.86). For example,
conjunctions can only be decomposed using conjunction decomposition (∧D)
and not any other decomposition rule.

When you decompose a proposition, you write the decomposed propositions un-
der the stack, you number these propositions, and you cite the decomposition
rule you used (along with the line number of the proposition you are decompos-
ing). As a helpful convention, you may want to place a check mark (X) by the
proposition you decomposed to indicate it has been decomposed. Before contin-
uing any further, it will be helpful to look at Agler, Symbolic Logic, pp.105-107.
There there is the formulation of the ∧D rule and some very simple examples.

Here, let’s turn a slightly more complicated tree, one that involves multiple uses
of ∧D. Consider the following set of propositions: P ∧R,M ∧¬P . First, we set
up the tree (see Figure 4.1).

1 P ∧R

2 M ∧ ¬P

Figure 4.1 – Truth tree setup.

Next, we begin the process of decomposing the tree. Let’s start by decomposing
P ∧R (see Figure 4.2).

1 P ∧RX
2 M ∧ ¬P
3 P

4 R

Figure 4.2 – Truth tree where P ∧R has been decomposed using
∧D

Notice, however, that M ∧¬P is a conjunction and so it too can be decomposed
using ∧D (see Figure 4.3).

The tree is now fully decomposed.

4.3 Truth Trees: Stacking vs. Branching (introducing ∨D) 45

1 P ∧RX
2 M ∧ ¬PX
3 P

4 R

5 M

6 ¬P

Figure 4.3 – Truth tree where M ∧ ¬P has been decomposed
using ∧D

.

4.3 Truth Trees: Stacking vs. Branching (intro-
ducing ∨D)

There are three major kinds of decomposition rules: stacking, branching, and
branching and stacking. When decomposing a proposition P , a stacking rule
represents that there is one condition in which P is true, a branching rule
represents that there are three conditions in which the P is true, and a branching
and stacking rule represents that there are two conditions in which P is true. All
of these rules look different. Consider the following propositions: P ∧R,M ∨¬P

1 P ∧RX
2 M ∨ ¬P
3 P 1 ∧D

4 R 1 ∧D

Since P ∧ R (at line 1) is a conjunction, and P ∧ R’ is true if P is true and
R is true, we can represent this by stacking P and R under the existing set of
propositions. In contrast, M ∨ ¬P is a disjunction and is true if either M is
true or ¬P is true. This is represented by creating two branches (or paths) that
break from the stack of propositions.

1 P ∧RX
2 M ∨ ¬PX
3 P

4 R
ss ,,5 M ¬P 2 ∨D

4.4 Truth Trees: Some Terminology

In this section, some terminology is developed for talking about truth trees.

46 PL: Truth Trees

Definition – Branch

All the propositions obtained by starting from the bottom of the tree and
reading upward through the tree.

Definition – Fully decomposed branch

A branch is fully decomposed when all propositions in the branch that
can be decomposed have been decomposed.

Definition – Partially decomposed branch

A branch is partially decomposed when there is at least one proposition
in the branch that has not been decomposed.

Definition – Closed Branch

A branch is closed when it contains a proposition P and its literal negation
¬(P). A closed branch is represented by an 7.

Definition – Open Branch

An open branch is a branch that is not closed. That is, a branch that
does not contain a proposition P and its literal negation ¬(P).

Definition – Completed Open Branch

A completed open branch is a fully decomposed branch that is not closed.
That is, it is a fully-decomposed branch that does not contain a propo-
sition P and its literal negation ¬(P). An open branch is denoted by
writing an O under the last proposition in the open branch.

Definition – Completed Open Tree

A tree is a completed open tree if and only if it has at least one completed
open branch. That is, a tree is a completed open tree if and only if
it contains at least one fully decomposed branch that is not closed. A
completed open tree is a tree where there is at least one branch that has
an O under it.

Definition – Closed Tree

A tree is closed when all of the tree’s branches are closed. A closed tree
will have an 7 under every branch.

4.4 Truth Trees: Some Terminology 47

Definition – Descending Decomposition Rule

When decomposing a proposition P , decompose P under every open
branch that descends from P .

Let’s consider a few examples. First, consider the tree in Figure 4.4

1 P ∧RX
2 M ∨ ¬PX
3 P

4 R
ss ,,5 M ¬P

O X

Figure 4.4 – Example #1: Basic Terminology

Lines 1 and 2 form the tree’s stack or the propositions composing the initial
setup of the tree. The tree has two branches. Starting from the left-hand
side with M at line 5, we read upward and identify M,R,P,M ∨ ¬P, P ∧R as
belonging to one branch. See Figure 4.5. Second, beginning with the ¬P at the
right-hand side at the bottom, we read upward and identify the formulas in the
second branch. See Figure 4.6

1 P ∧RX
2 M ∨ ¬PX
3 P

4 R
ss ,,5 M ¬P

O x

Figure 4.5 – Branch 1: M,R,P,M ∨ ¬P, P ∧R

1 P ∧RX
2 M ∨ ¬PX
3 P

4 R
ss ,,5 M ¬P

O X

Figure 4.6 – Branch 2: ¬P,R, P,M ∨ ¬P, P ∧R.

Branch #1 is a completed branch as all of the propositions that can be de-
composed have been decomposed (more on this in the next section). In addition,

48 PL: Truth Trees

1 R ∨ (P ∧M)X

2 C ∧DX
2∨Drr 2∨D ,,3 R P ∧M

4 C C

5 D D

Figure 4.7 – Initial Tree

1 R ∨ (P ∧M)X

2 C ∧DX
1∨Drr 1∨D

,,
4 R P ∧M

5 C C

6 D D

7 P

8 M

Figure 4.8 – Correct Use of Descending Decomposition Rule

it is a completed open branch as there is no proposition P and its literal
negation ¬(P) in M,R,P, (M ∨ ¬P), (P ∧R).

Branch #2 is also a completed branch, but it is a closed branch as there is
an instance of the proposition P and ¬P in the branch ¬P,R, P,M ∨¬P, P ∧R.

As the tree has one completed open branch, the tree is classified as an open
tree. If all of the branches were closed, the tree would be closed.

The descending decomposition rule states that when decomposing a propo-
sition P , decompose P under every open branch that descends from P (see Agler,
Symbolic Logic (1st ed.) pp.100–103). This means that when you decompose P
you decompose it under every open branch that descends from P . You are not
required to decompose P under closed branches and should not decompose it
under branches that do not descend from P .

When considering the tree above, there is a question of whether P ∧M should
be decomposed under both branches or only under the right branch. If
we follow the descending decomposition rule, we should only decompose P ∧M
under the right branch since the left branch is not a branch that descends
from P ∧M .

4.5 Truth Trees: Remaining Decomposition Rules

A fully decomposed branch was defined as a branch where all propositions in the
branch that can be decomposed have been decomposed. However, in putting

4.6 Truth Trees: Decomposition Strategies 49

1 R ∨ (P ∧M)X

2 C ∧DX
1∨Drr 1∨D

,,
4 R P ∧M

5 C C

6 D D

7 P P

8 M M

Figure 4.9 – Incorrect Use of Descending Decomposition Rule

forward this definition, no mention was made of which propositions can be de-
composed. Any wff that is neither a propositional letter P or its literal negation
¬(P) is decomposable. For our purposes, however, wffs are grouped into nine
different proposition types and there is a decomposition rule for each one of
these types.

Proposition Types Wff D-Rule
conjunction (P ∧Q) ∧D
disjunction (P ∨Q) ∨D
conditional (P → Q) → D
biconditional (P ↔ Q) ↔ D
negated conjunction ¬(P ∧Q) ¬ ∧D
negated disjunction ¬(P ∨Q) ¬ ∨D
negated conditional ¬(P → Q) ¬ → D
negated biconditional ¬(P ↔ Q) ¬ ↔ D
double-negation ¬(¬P) ¬¬D

Table 4.2 – Decomposable Proposition Types and Decomposition
Rules

Choosing which decomposition rule to apply to a proposition is entirely deter-
mined by the type of proposition it is. If P is a conjunction, then you apply the
corresponding decomposition rule for conjunctions: ∧D. If P is a disjunction,
you apply ∨D as this is the decomposition rule for disjunctions. And so on.

Exercise 1: Create a truth tree for the following sets of wffs, then deter-
mine if the tree is open or closed:

1. P ∧ ¬Q
2. P ∧Q,P → Q,P ∨Q
3. ¬P ∨ ¬Q,¬(P ∧Q), P ↔ Q

4.6 Truth Trees: Decomposition Strategies

Using the decomposition rules blindly ultimately lead to a completed open or
a closed tree. For example, for a tree involving P ∧ Q,P → R, it is equally

50 PL: Truth Trees

P ∧Q

P ∧D
Q ∧D

P ∨Q
tt **P Q ∨D

¬(P ∨Q)

¬(P) ¬ ∨D

¬(Q) ¬ ∨D

¬(P ∧Q)
ss ++¬(P) ¬(Q) ¬ ∧D

¬(P → Q)

P ¬ → D

¬(Q) ¬ → D

P ↔ Q
tt ++

P ¬(P) ↔ D

Q ¬(Q) ↔ D

¬¬(P)

P ¬¬D
¬(P ↔ Q)

ss ++
P ¬(P) ¬ ↔ D

¬(Q) Q ¬ ↔ D

Table 4.3 – Truth tree decomposition rules for PL

acceptable to begin by decomposing either of the two propositions. However, a
strategic use of these rules will lead to the same result in a timelier manner.
There are four such strategic rules:

Strategic Rule 1: Use no more rules than needed.
Strategic Rule 2: Use rules that close branches.
Strategic Rule 3: Use stacking rules before branching rules.
Strategic Rule 4: Decompose more complex propositions before simpler
propositions.

Table 4.4 – Decomposition Strategies for PL Truth Trees

Keep in mind that these rules are "rules of thumb" and so the successful de-
composition of a tree does not require you to follow them.

Exercise 2: Use a truth tree to determine if the tree is open or closed.
To simplify your work, use the strategic rules (Note: you may not need to
decompose every wff to determine if the tree is open or closed).

1. P ∨ (Q ∨R), P ∧ ¬P
2. (P ∨ P) ∧ (R ∧ ¬R), S ↔ T, P ∨M
3. (P ∧Q) ∧R,M ∨ (Q ∨ ¬R)

4.7 Truth Trees: Analysis

Truth trees can be used to determine various semantic properties about proposi-
tions, sets of propositions, and arguments. Using truth trees to do this requires
that you (i) set up the tree in a specific way to test for a specific property (you
can’t just stack the propositions in every instance), (ii) know whether a closed

4.7 Truth Trees: Analysis 51

(or completed open) tree indicates a specific semantic property.

4.7.1 Recovering an Interpretation

From a completed open branch in a truth tree, we can construct an interpreta-
tion (an assignment of T or F to propositional letters) that would make all of
the wffs in that branch true. For example, consider the tree in Figure 4.10.

1 P ∧RX
2 M ∨ ¬PX
3 P

4 R
ss ,,5 M ¬P

O X

Figure 4.10 – Recovering an interpretation from a tree for P ∧
R,M ∨ ¬P

In order to recover an interpretation from an open branch: for every atomic
wff in the branch, assign a T to the corresponding propositional letter, and for
every negated atomic wff, assign F to the propositional letter contained in that
formula. Alternatively, you can sign T to the negated wff. So, since M,R,P
are atomic wffs in the open branch of Figure 4.10, an interpretation is recovered
from Figure 4.10 by assigning I (M) = T,I (R) = T,I (P) = T .

4.7.2 Sets of Propositions: Consistency

A completed open branch tells us that there is a way to assign truth values (an
interpretation) that would make all of the wffs in the branch true. Given this
is the case, a completed open branch tells us that the stack of wffs (and all of
the wffs in the branch for that matter) are consistent.

Definition – Consistent

A set of propositions {P,Q,R, . . . Z} is consistent if and only if there is
at least one interpretation where P,Q,R, . . . Z are true. A truth tree
shows that {P,Q,R, . . . , Z} is consistent if and only if a complete tree of
the stack of P,Q,R, . . . , Z determines a completed open tree. That is, if
there is at least one completed open branch.

In contrast, if a truth tree for a set of wffs yields a closed tree. That is, a truth
tree where there is not a completed open branch, then there is no way to assign
truth values to the propositional letters (an interpretation) that would make
the propositions in the stack come out true. In other words, a closed tree tells
us that the stack of wffs are inconsisent.

52 PL: Truth Trees

Definition – Inconsistent

A set of propositions {P,Q,R, . . . Z} is inconsistent if and only if there
is no interpretation where P,Q,R, . . . Z are true. A truth tree shows
that {P,Q,R, . . . , Z} is inconsistent if and only if a tree of the stack of
P,Q,R, . . . , Z is a closed tree. That is, if all branches close.

Suppose you are testing whether the set {P ∨ Q,Z ∨ R} is consistent / incon-
sistent. Begin by writing each proposition on a separate line in the tree.

1 P ∨Q

2 Z ∨R

Figure 4.11 – Setup to test whether P ∨Q,Z ∨R are consistent.

Next, we decompose the tree.

1 P ∨QX

2 Z ∨RX1∨D

qq
1∨D

--3 P
2∨Duu 2∨D))

Q
2∨Duu 2∨D))4 Z R Z R

Figure 4.12 – A tree with at least one completed open branch
showing that P ∨Q and Z ∨R are consistent.

Finally, we analyze or “read” the tree by looking to see whether the tree has
a completed open branch. Since it does, the truth-tree test reveals that {P ∨
Q,Z ∨ R} is consistent, viz., we can assign truth values to P,Q, and Z such
that P ∨Q and Z ∨R both come out as true.

In contrast, the truth tree for {¬(S → T),¬¬(¬S ∨ T)} shows that that set is
inconsistent.

1 ¬(S → T)X

2 ¬¬(¬S ∨ T)X

3 ¬S ∨ T

4 ¬¬S
5 ¬T

3∨Drr 3∨D ,,6 ¬S T
x x

Figure 4.13 – A closed tree that shows ¬(S → T) and ¬¬(¬S∨T)
are inconsistent.

4.7 Truth Trees: Analysis 53

Starting from the base of the tree, notice that there is a proposition P and
its literal negation ¬(P) in both branches. In the left branch, there is ¬S and
S while in the right branch there is T and ¬T . As such, there is no way we
can give a uniform assignment of truth values to the propositional letters that
compose the stack that would make {¬(S → T),¬¬(¬S ∨ T)} true.

4.7.3 Propositions: Tautology, Contradiction, Contingency
Definition – Tautology

A proposition P is a tautology if and only if P is true under every valua-
tion. A truth tree shows that P is a tautology if and only if a tree of the
stack of ¬(P) determines a closed tree.

Definition – Contradiction

A proposition P is a contradiction if and only if P is false under every
valuation. A truth tree shows that P is a contradiction if and only if a
tree of the stack of P determines a closed tree.

Definition – Contingency

A proposition P is a contingency if and only if P is neither always false
under every valuation nor always true under every valuation. A truth tree
shows that P is a contingency if and only if a tree of P does not determine
a closed tree and a tree of ¬(P) does not determine a closed tree.

4.7.4 Pairs of Propositions – Equivalence
Definition – Equivalence

A pair of propositions P,Q is equivalent if and only if P and Q have
identical truth values under every valuation. A truth tree shows that P
and Q are equivalent if and only if a tree of ¬(P ↔ Q) determines a closed
tree.

1 ¬((P → Q)↔ (¬P ∨Q))

Figure 4.14 – Correct setup to test whether P → Q and ¬P ∨Q
are equivalent.

4.7.5 Arguments: Validity
Definition – Validity

54 PL: Truth Trees

An argument P,Q, . . . , Y therefore Z is valid in PL if and only if P,Q,
. . . , Y |= Z. A truth tree shows that an argument P,Q, . . . , Y |= Z if and
only if P,Q,R, . . . , Y,¬(Z) determines a closed tree.

1 P

2 Q

3 ¬(Z)
tt **4 Z Z

x x

Figure 4.15 – Example of a tree that shows P,Q therefore Z is
valid.

4.8 Truth Trees: What’s the Point?

In lessons 1 and 3, we formulated two different methods for determining whether
an argument was valid or invalid. In lesson 1, we used what might be called the
"imagination test", a test that requires us to test the validity of the argument
by trying to imagine a scenario where the premises are true and the conclusion
is false. If we can imagine such a scenario, then the argument is invalid. If
we can’t, then the argument is said to be valid. In lesson 3, we pointed out
two problems with this test. First, the test breaks down when dealing with
large arguments as all of the states of affairs represented by the many English
sentences are hard to keep in one’s mind. Second, the test is subject to human
bias.

After we developed the logical language PL in lesson 3, we attempted to re-
place the "imagination test" with the "truth-table test." The primary merit of
truth tables were that they could be used to determine whether certain argu-
ments were valid or invalid in a completely mechanical way. Truth tables thus
introduce an automated method of checking arguments, one that could avoid
problems of human bias. However, we also noted that the truth-table method
had its own problems. First, it could not easily handle arguments that involved
many propositional letters. Second, we cannot represent every valid English
argument in PL.

In this lesson, we formulated the truth-tree test. The primary merit of this
method is that the complexity of truth trees is not a function of the number
of propositional letters in the argument. That is, where the argument ¬(M ∨
S),¬((T ∨R) ∨Q),¬(¬(S ∨R) ∨Q) |= ¬A would require a whopping 64 rows
(26 = 64), a truth tree quickly reveals the above argument is valid:

However, truth trees suffer from the same problem as truth tables. Since not
every valid argument in English can be represented in PL, the truth-tree method
can only tell us whether arguments that can be represented in PL are valid

4.8 Truth Trees: What’s the Point? 55

1 ¬(M ∨ S)X P

2 ¬((T ∨R) ∨Q)X P

3 ¬(¬(S ∨R) ∨Q)X P

4 ¬¬AX P

5 A 4DN

6 ¬M 1¬ ∨D

7 ¬S 1¬ ∨D

8 ¬(T ∨R) 2¬ ∨D

9 ¬Q 2¬ ∨D

10 ¬¬(S ∨R)X 3¬ ∨D

11 ¬Q 3¬ ∨D

12 S ∨ TX 10DN

13 ¬T 8¬ ∨D

14 ¬R
rr ,,

8¬ ∨D

15 S R 12 ∨D

Figure 4.16 – Truth tree for ¬(M ∨ S),¬((T ∨R) ∨Q),¬(¬(S ∨
R) ∨Q) |= ¬A

or invalid. It does not tell us whether arguments that cannot be accurately
represented in PL are valid or invalid. In lesson 6, we formulate a new, more
expressive logical language that aims to incorporate more valid arguments in
English. But, for now, in lesson 5, we turn to a discussion of how to formulate
a set of inference or derivation rules that will allow us to show that a conclusion
follows from a set of premises.

Questions

1. What is a branch in a truth tree?
2. What is a fully decomposed branch in a truth tree?
3. What is the difference between a closed branch and a completed open

branch?
4. Can a branch be a completed open branch and a closed branch?
5. If a branch has a wff P and that wff’s literal negation ¬(P), is that

branch closed or open?
6. What is a completed open tree?
7. Can a completed open tree have a closed branch?
8. What is a closed tree?
9. Can a closed tree have an open branch?
10. What is the descending decomposition rule?
11. Decompose a tree for P → ¬Q. What does that completely decomposed

tree tell us about the conditions under which P → ¬Q?
12. Can ∧D be used to decompose conjunctions?
13. What type of wff does neg ↔ D decompose?

56 PL: Truth Trees

14. Recover an interpretation from a tree whose stack consists of ¬P →
Q,W ∧ S.

15. Can an interpretation be recovered from a closed branch?
16. Determine whether P ∧ ¬Q,P ∨ ¬Q is consistent.
17. Determine whether P ∧ ¬Q,S ∨ ¬(M ∨R) is consistent.
18. Determine whether P → Q,P ∨Q is equivalent.
19. Determine whether P ∧ P ∨ P is a contingency, tautology, or contra-

diction.
20. Determine whether P → (Q → P) is a contingency, tautology, or con-

tradiction.
21. Determine whether P ∨Q,P → R,Q→ R therefore R is a valid argu-

ment.
22. In using a truth-tree test to determine whether P,Q,R |= Z, why is

it the case that a closed tree tells us that P,Q,R |= Z rather than
P,Q,R 6|= Z

23. If P→ Q is a tautology, is it the case that P |= Q? That is, if a con-
ditional P→ Q is a tautology, does the antecedent of that conditional
P entail the consequent Q?

24. If P |= Q, then is P→ Q a tautology? That is, if P entails Q, then is
the conditional P→ Q a tautology?

25. If the set of wffs P,Q,R is inconsistent, then does P,Q,R |= Z and
P,Q,R |= ¬(Z)?

