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Logic refers to the study or good and bad arguments. Deduc-
tive logic refers to the study of arguments where the conclu-
sion of an argument is a “logical consequence” of the premises.
And, symbolic logic refers to the articulation and study of logic
using a formal (symbolic) language. In this course, students
will be introduced to two symbolic languages: the language
of propositional logic and the language of first-order predicate
logic. Students will learn the symbols, syntax (grammar), and
semantics of these languages, as well as decision procedures
(tables and trees) and proof systems.
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RL+: identity, functions, definite
descriptions

1.1 Introduction: extensions, deviations, variations

A formal language is defined as a set of symbols and a syntax (characters and rules for putting
characters into well-formed formulas). A logical system is a formal language along with a
semantics (that is, an interpretation of the symbols and semantics) and a proof-system (a set of
derivation rules). The language of propositional logic and the language of predicate logic form
systems of logic once they are given a semantics and a proof system.

The systems of propositional logic and predicate logic (as they have been discussed in earlier
lessons) are referred to as classical or standard logic. Referring to them as “standard” or “classical”
is not meant to indicate that they are better or worse than other logical systems. Rather, these
designations are simply useful as reference points for characterizing the panoply of logical systems.
In other words, other logical systems can be seen in one of three ways in relation to classical
logic:

1. an extension of classical logic
2. a deviation from classical logic
3. a syntactic variation of classical logic

An extension of classical logic expands upon or adds to the classical logic systems by adding
additional logical constants (operators), which subsequently (but not always) get incorporated
into the syntax, semantics, and proof-system of the logical system. A simple example of an
extension of classical propositional logic would be to add an additional truth-functional operator
(↑) to the existing set (¬,∧,∨,→,↔), then add a syntactic rule to the language (e.g. if φ and
ψ are wffs, then φ ↑ ψ is a wff), add a semantic rule for wffs where ↑ is the main operator (e.g.
v(φ ↑ ψ) = T iff v(φ) = F or v(φ) = F , and then a derivation rule (e.g. φ ↑ (ψ → χ), φ ` χ).

Extensions may be divided into substantive and superficial extensions. A substantive exten-
sion increases the expressivity of the logical system: the logical system is now able to capture a
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semantic or syntactic entailment that it was previously incapable of expressing. The extension
of propositional logic to predicate logic is an example of such an extension. Since the language
of propositional logic treats propositions as whole units, it is incapable of expressing the internal
(subsential) logical structure that is at least partially represented by predicate logic. A superficial
extension (like the example involving ↑ given above) makes no contribution to the expressivity
of the logical system. These extensions are often made for convenience, simplicity, or for specific
purposes (e.g. there is a particular philosophical interest in what the symbol represents). For
example, since wffs of the form φ ↑ ψ express the same truth function as v¬(φ ∧ ψ), adding the
operator ↑ does not substantively extend the system of propositional logic.

A deviation from classic logic involves an alteration of the logical system at the semantic
level (and this has implications for the proof system). In other words, when a logical system
is a deviation from classical logic, it will look the same as classical logic in that it will make
use of the same symbols and syntax. Where the difference occurs is at the semantic level in
terms of how propositional letters are interpreted or how valuation rules for truth-functional
operators work. For example, in a three-valued system of logic, the set of wffs in the system
will be the same as that of classical logic. However, since a three-valued system of logic denies
the principle of bivalence (the principle that every wff is T or F, not both and not neither) and
instead asserts that propositional letters are interpreted as T, F, or I (indeterminate), this system
of logic deviates from classical propositional logic. Logics that are deviations form classical logic
are sometimes referred to as Deviant Logics.

Third, a syntactic variation of classical logic offers a semantically equivalent but syntactically
distinct version of classical logic. The systems of classical logic are often characterized in terms
of a set of operators, typically a unary operator (¬) and some combination of binary operators
(e.g. →,∨,∧,↔). One example might be a language consisting of ¬,∨,∧ and instead of →,
there is the symbol 7→. Instead of wffs like φ→ ψ, the 7→ operator is prefixed to wffs, viz., if φ
is a wff and ψ is a wff, then 7→ φψ is a wff in this new system. Semantically speaking, there is
no difference between classical logic with its use of → and our new syntactically distinct system
and its use of 7→. That is, φ → ψ expresses the same truth function as 7→ φψ, and they both
can be used as translations of sentences of the form “if P, then Q”. In short, syntactic variations
are grammatical alternatives to classical logic while doing same semantic work as their classical
logic counterparts.1

1.2 Predicate Logic Semantics with Variable Assignments

Before considering various extensions to the language of predicate logic, it is necessary to return
to predicate logic semantics. Revising our semantic system slightly will allow for a more general
approach to the extensions we will undertake later on.

Recall the following valuation rules for predicate logic (let α1, . . . , αn be any series of names (not
necessarily distinct), P be any n-place predicate, and φ, ψ are wffs in RL):

1The above discussion was primarily drawn from L.T.F. Gamut Logic, Language, and Meaning, Vol. 1, pp.156-
157.
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Definition – RL-valuation using names

1. if Pα1 . . . αn is an atomic wff in RL, then vM(Pα1 . . . αn) = T iff 〈I (α1), . . . ,I (αn)〉
∈ I (P ), otherwise vM(Pα1 . . . αn) = F

2. vM(¬(φ)) = T iff vM(φ) = F
3. vM(φ ∧ ψ) = T iff vM(φ) = T and vM(ψ) = T
4. vM(φ ∨ ψ) = T iff vM(φ) = T or vM(ψ) = T
5. vM(φ→ ψ) = T iff vM(φ) = F or vM(ψ) = T
6. vM(∀x)φ = T iff vMφ(α/x) = T for every name α in RL.
7. vM(∃x)φ = T iff vMφ(α/x) = T for at least one name a in RL.

This set of rules makes two simplifications. First, the domain of the valuation function was
limited to closed RL-wffs. This simplification left the truth value of open RL-wffs (wffs with free
variables, e.g. Px) undefined. That is, our system of logic has a syntax that produces formulas
that are wffs but the semantic system does not state whether these wffs are true or false. Second,
it assumes that there is an RL-name for every item in the domain of discourse. This assumption
allows for specifying the truth value of existentially and universally quantified wffs in terms of
non-quantified wffs. For example, vM(∀x)φ = T iff vMφ(α/x) for every name a in RL. The
problem with this simplification is that it assumes that there is a name for every item in the
domain. This assumption is not problematic in the sense that RL lacks enough names to refer
to every object for RL has an infinite number of names at its disposal. The problem, instead, is
that even with an infinite number of names, there is no guarantee that each item in the domain
is named. And if this is the case, then v(∀x)Px = T even though some unnamed item u1 ∈ D is
not in the interpretation of P .

In order to avoid these issues, we reformulate the valuation rule for predicate logic. This refor-
mulation, however, requires some additional notation and complexity.

First, let’s begin with the notion of a variable assignment. A variable assignment is a function
that has all of the variables in RL as its domain (takes the variables as input) and has the items
in the domain of the model (D) as its range (takes items in the domain of the model as output).

Definition – variable assignment

A variable assignment g for a model M (〈D,I 〉) is a function that assigns to each
variable some object in D.

Intuitively, the notion of a variable assignment takes the infinite number of variables from RL
and assigns each an object in the domain. Thus, for a D consisting of a single object u, each
variable would be assigned to (or refer to) u. For a D consisting of two objects u1, u2, one variable
assignment g1 might assign x and y to u1, z and the remaining variables to u2, while another
variable assignment g2 might assign x to u1 while assigning y, z and the remaining variables to u2
(since our language involves an infinite number of variables, a variable assignment would assign
each variable to either u1).

We need a way to specify variable assignments so that it is clear which item in the domain is
assigned to which variable in the language. Let “g(x)” stand for a variable assignment of x.
Thus, if g(x) = u1, then g(x) is an assignment of x to u1.
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The next step is to relativize the valuation function not merely to a model (M) but also to a
variable assignment (g). That is, we specify the truth value of RL-wffs relative to a model and
a way of assigning variables to items in the domain. This valuation is now symbolized as vM,g.
This can be read as “the valuation relative to a model M and variable assignment g”. This
relativization allows us to formulate two different rules for atomic wffs in RL (let α be a name
and x be a variable):

1a if Pα1 . . . αn is an atomic wff in RL, then vM,g(Pα1 . . . αn) = T iff 〈I (α1), . . . ,I
(αn)〉 ∈ I (P )

1b if Px1 . . . xn is an atomic wff in RL, then vM,g(Px1 . . . xn) = T iff 〈g(x1), . . . , g(xn)〉
∈ I (P )

One immediate benefit of this formulation is we now can define the truth value of wffs that have
free variables. For example, take the wff Ixx where I is the two-place predicate “x is identical
to y”. Here we say that vM,g(Ixx) = T iff 〈g(x), g(x)〉 ∈ I (I).

There is, however, a problem with the above valuation rules. The problem is that the valuation
rules apply only to atomic wffs containing either names or variables but not to wffs containing
both names and variables, e.g. Lax, Pxyb,Maby.

To solve this problem, first let’s define an RL-term as any name or variable in RL.

Definition – RL-term

An RL-term t is any name or variable in RL.

Second, let’s define the notion of a “denotation of a term”.

Definition – denotation of a term

LetM be a model, g be a variable assignment, t be a term (name or variable). The
denotation of t relative to a model and a variable assignment (that is, [t]M,g) is:

1. I (t) if t is an RL-name, or
2. g(t) if t is an RL-variable.

The expression [t]M,g reads the denotation of t relative to a modelM and a variable assignment
g.

The denotation of a term t refers to one of two things, depending upon whether t is a name or
variable. The denotation refers to the interpretation of t if t is a name or it refers to the variable
assignment of t if t is a variable. For example, the denotation of the name a refers to whatever
object the name a refers to in the domain (e.g. I (a) = 1), while the denotation of x refers to
whatever object the variable assignment of x refers to in the domain (e.g. g(x) = 2).

We can now combine the two valuation functions into a single valuation rule that makes us of
the notion of a denotation of a term.
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if t is a term and Pt1 . . . tn is an atomic wff in RL, then vM,g(Pt1 . . . tn) = T iff
〈[t1]M,d, . . . , [tn]M,g〉 ∈ I (P )

To illustrate (here we drop out notation involving relativizing to the model and the variable
assignment), take Lax, an atomic wff containing the name a and variable x. We might read this
as “Al loves x”. Applying our valuation function to this wff: v(Lax) = T iff 〈[a], [x]〉 ∈ I (L).
That is, v(Lax) = T iff the ordered pair consisting of the denotation of the name a and the
denotation of the variable x are in the interpretation of L. That is, of course, the same as saying
that v(Lax) = T iff 〈I (a), g(x)〉 ∈ I (L). It is important to note that our notion of truth is
doubly relativized in that a wff is true relative to a model and relative to a variable assignment.
And so, “Al loves x” is true provided, relative to a model and relative to a variable assignment,
the ordered pair 〈Al, [x]〉 is in the interpretation of the two-place predicate Lxy (x loves y).

This modification of the valuation function works well for atomic wffs, but there still remains a
problem for existentially and universally quantified wffs.

Consider the wff (∃x)Px or someone is a person. At first glance, one idea is to say that
vM,g(∃x)Px = T iff vM,g(Px) = T . We have a procedure for determining the truth value of such
a wff; namely, vM,g(Px) = T iff 〈[x]M,g〉 ∈ I (P ). Thus, vM,g(∃x)Px = T iff 〈[x]M,g〉 ∈ I (P ).
This approach is attractive at first glance since it falls in line with our general approach of treat-
ing the truth value of complex wffs as compositionally determined. That is to say, similar to
how the truth value of P ∧Q is determined by the truth value of P,Q and the logical operator
for conjunction, we now can treat the truth value of (∃x)Px as being determined by the truth
value of Px and the existential quantifier.

But this does not get us the right result since the variable assignment g assigns a specific item
from the domain to each variable. This means that x refers to a single item in the domain much
like a name. This is problematic because intutiively, the existential quantified wff is true not so
long as the denotation of x is in P , but so long as at least one item from the domain is in the
interpretation of P . In other words, the variable assignment g is just one way that variables may
be assigned items in the domain and the existential quantifier requires us to consider variable
assignments other than g. What we need then is a way not only to consider other variable
assignments. To achieve this, let’s introduce the notion of a variant variable assignment:

Definition – variant variable assignment

Let α be a variable and u be an item in the domain u ∈ D of a model, a variant variable
assignment gαu is a variable assignment g for a modelM except that it assigns u to α.

In terms of reading a variant variable assignment, where gαu is read as a variable assignment just
like g except that the variable α is assigned u. To illustrate, let’s consider two examples.



1.2 Predicate Logic Semantics with Variable Assignments 6

Example 1: Illustration of a variant variable assignment

Suppose there is a variable assignment g where g(x) = u1, g(y) = u2, g(z) = u3. The
variant variable assignment gyu1

is just like g except that where g(y) = u2 (that is the
variable y is assigned the item u2) in gyu1

the variable y is assigned the item u1. That
is, gyu1

(y) = u1. More explicitly:

• g = g(x) = u1, g(y) = u2, g(z) = u3
• gyu1

= gyu1
(x) = u1, g

y
u1
(y) = u1, g

y
u1
(z) = u3

Notice that the only difference between g and gyu1
is that gyu1

assigns the variable y to
u1 instead of u2.

It is important to note that a variable assignment and a variant variable assignment might be
identical. To see this, consider a second example of a variant variable assignment.

Example 2: Illustration of a variant variable assignment

Suppose there is a variable assignment g where g(x) = u1, g(y) = u2, g(z) = u3. Now
consider the variant variable assignment gxu1

:

• g = g(x) = u1, g(y) = u2, g(z) = u3
• gxu1

= gxu1
(x) = u1, g

x
u1
(y) = u2, g

x
u1
(z) = u3

Notice that there is no difference between the variable assignment g and the variant
variable assignment gxu1

.

A variant variable assignment provides a way of referring to other variable assignments relative
to a model and a variable assignment. That is, given a fixed model and a variable assignment, the
variant variable assignment allows for considering other ways that variables might be assigned
items in the domain. With the notion of a variant variable assignment in place, it is now possible
to formulate the valuation function for universally and existentially quantified wffs.
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Definition – RL-valuation

An RL-valuation — for a model M and variable assignment g — is a function that
assigns to each RL-wff a truth value (T or F, not both, not neither) using the following
rules (let P be any n-place predicate, t1, . . . , tn be a series of terms (not necessarily
distinct), α be any variable, φ, ψ any RL-wff):

1. vM,g(Pt1 . . . tn) = T iff 〈[t1]M,g, . . . , [tn]M,g〉 ∈ I (P )
2. vM,g(¬(φ)) = T iff vM,g(φ) = F
3. vM,g(φ ∧ ψ) = T iff vM,g(φ) = T and vM,g(ψ) = T
4. vM,g(φ ∨ ψ) = T iff vM,g(φ) = T or vM,g(ψ) = T
5. vM,g(φ→ ψ) = T iff vM,g(φ) = F or vM,g(ψ) = T
6. vM,g(∀α)φ = T iff for every u ∈ D, vM,gαu

(φ) = T .
7. vM,g(∃α)φ = T iff for at least one u ∈ D, vM,gαu

(φ) = T .

Let’s consider two examples, one involving an existentially quantified wff and one involving a
universally quantified wff.

Example 3:

Take the modelM = 〈D,I 〉, where D = {1, 2, 3, 4, 5}, I (N) = {1, 2, 3, 4, 5}, I (O) =
{2, 4}, I (a) = 1, I (b) = 2, I (c) = 3, g(x) = 1, g(y) = 2, and all other variables are
assigned 3.

1. Consider the truth value of (∃x)Ox. Given the above valuation rule, vM,g(∃x)Ox =
T since there is one u ∈ D such that vM,gxu

(Ox) = T . That is, while it is not
the case that vM,g(Ox) = T since the variable assignment g assigns 1 to x, it
is the case that there is a variant variable assignment gxu where (∃x)Ox would
come out as true. For instance, consider the variant variable assignment gx2 , viz.,
where g assigns the variable x to 2 ∈ D. On this variant variable assignment,
(∃x)Ox is true. So, vM,gx2

(Ox) = T .
2. Consider the truth value of (∀x)Nx. Given the above valuation rule, vM,g(∀x)Nx =
T since for every u ∈ D, it is the case that that vM,gxu

(Nx) = T . That is,
vM,gx1

(Nx) = T , vM,gx2
(Nx) = T , . . . , vM,gx5

(Nx) = T .

Exercise 1-1:

Determine the truth values of the following wffs relative to the following modelM and
variable assignment g: M = 〈D,I 〉, where D = {1, 2, 3, 4, 5, 6}, I (a) = 1,I (b) = 2
and for all other names α,I (α) = 3; I (N) = {1, 2, 3, 4, 5, 6}, I (O) = {1, 3, 5},
I (G) = {〈2, 1〉, 〈3, 2, 〉}, I (M) = {2, 4, 6}, g(x) = 1, g(y) = 2, and all other variables
are assigned 3.

1. Oa
2. Mb
3. Mx
4. Gyx
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5. (∃x)Ox
6. (∃x)Mx
7. Nx
8. (∀x)Nx
9. (∀x)(Ox ∨Mx)
10. (∃x)(∃y)Gxy

1.3 Identity

One common relation between members in the domain of discourse is the identity (equality)
relation. While we could represent the identity relation as a two-place predicate I and express
that a is identical to b as Iab, it is helpful to use a dedicated symbol to express the proposition
that two names refer to the same object (relative to a model). Thus, in addition to our list of
RL symbols, we add the = symbol. The symbol = will be treated as a logical constant since it
will always be treated as the relation of identity. For the negation of identity, viz., to say that
two items in a model are not identical, we use 6=.

In adding = to the symbols of RL, we are making a superficial extension to our logical system.
Nevertheless, while the addition to the system is superficial, this is not to imply that such an
additional has no practical value. As we will see, adding = to the symbols of RL allows for
a more perspicuous presentation of various sentences that we have interest in expressing, e.g.
sentences about specific quantities.

The “=” symbol is intended to express a specific type of two-place predicate relation, namely that
of “numerical identity”. What is meant when we say that two individuals a and b are numerically
identical is that a and b refer to the exact same object. Numerical identity is different from
saying two objects are the same in that they are two of the same kind or that they are the same
in that they are extremely similar. That is, we might say that two copies of a book are the same,
or two identical twins are the same, or two apples in a grocery store are the same, but here we
do not mean numerical identity.

In addition, to adding this symbol to our list of symbols, it is necessary to add a rule to our
formation rules for creating wffs. Thus, we can add the following formation rule (rule 2) to our
existing set of formation (grammatical) rules.
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Definition – RL formation rules with identity

1. an n-place predicate P followed by n terms (names or variables) is a wff in RL.
2. if α and β are terms (names or variables), then α = β is an RL-wff.
3. If φ is a wff in RL, then ¬(φ) is a wff in RL.a
4. If φ and ψ are wffs in RL, then (φ∧ψ), (φ∨ψ), (φ→ ψ), and (φ↔ ψ) are wffs

in RL.
5. If φ is a wff in RL containing a name a and if φ(x/a) is what results from

substituting the variable x for every occurrence of a in φ, then (∀x)φ(x/a) and
(∃x)φ(x/a) are wffs in RL (provided that ’φ(x/a)’ is not a wff).

6. Nothing else is a wff in RL except that which can be formed by repeated appli-
cations of the above.

aWe will make use of Conventions for parentheses. Thus ¬(Pa) and ¬Pa are both wffs.

For convenience, we will refer to any wffs formed by rule (2) as identity wffs or identity
statements. Notice that wffs involving = can contain free variables. That is, from a syntactic
point of view, both a = a and x = x are RL-wffs.

Example 4: Consider the following examples of RL-wffs involving the iden-
tity symbol

1. a = b
2. b = a
3. a 6= a
4. x = x
5. Pa ∧ b = a
6. (∀x)x = x
7. (∃x)(Px ∧ x 6= a)
8. (∃x)Px ∧ x = a

Next, we introduce a valuation rule to our semantics. Were we to formulate such a rule only for
closed identity statements (wffs without free variables), our rule would look as follows:

where α and β are names, vM(α = β) = T iff [α]M = [β]M, otherwise vM(α = β) = F .

In other words, the wff α = β is true if and only if the item in the domain denoted by α is the
same object denoted by β. Another way of thinking about this is to say that the wff α = β is
true in a model if and only if relative to that model the interpretation of α is identical to the
interpretation of β.

Example 5:

Suppose the following model: M = 〈D,I 〉;D = {2, 4},I (a) = 2,I (b) = 4,I (c) =
2,I (Px) = {2, 4}. First, consider Pa ∧ a = c. Here, a must be in the interpretation
of P and a and c refer to the same object. Since I (a) = I (c) = 2, v(a = b) = T ; and
since I (a) ∈ I (P ) (the interpretation of a is in the interpretation of P , v(Pa) = T .
Therefore, v(Pa ∧ a = c) = T .
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Exercise 1-2: Given the following model, determine if the following closed identity
wffs are true: M = 〈D,I 〉;D = {1, 2, 3, 4},I (a) = 1,I (b) = 2,I (c) = 1,I (d) =
1,I (Px) = {2, 4}

1. a = b
2. b = a
3. b = c
4. a 6= b
5. (∃x)x = x
6. (∀y)y = y
7. (∃x)Px ∧ x = b

However, our valuation rule need not be confined to closed wffs. That is, earlier we formulated
our semantics so that valuation rules could apply to open formulas. We saw that in order to
generalize our valuation rules, it was necessary to relativize the valuation rule not only to the
model but to a variable assignment. Thus, our valuation rule for identity statements can be
stated in a more general way.

where α and β are terms (names or variables), vM,g(α = β) = T iff [α]M,g = [β]M,g,
otherwise vMg

(α = β) = F .

This says that α = β is true if and only if the denotation of α relative to the model and the
variable assignment is the identical to the denotation of β relative to the model and the variable
assignment.

Thus, we can add the above rule to our existing set of valuation rules:

Definition – RL-valuation rules with identity

An RL-valuation — for a model M and variable assignment g — is a function that
assigns to each RL-wff a truth value (T or F, noth both, not neither) using the following
rules (let P be an n-place predicate, t be a term, α be a variable, φ, ψ any RL-wff):

1. vM,g(Pt1 . . . tn) = T iff 〈[t1]M,g, . . . , [tn]M,g〉 ∈ I (P )
2. where α and β are terms (names or variables), vM,g(α = β) = T iff [α]M,g =

[β]M,g, otherwise vMg (α = β) = F
3. vM,g(¬(φ)) = T iff vM,g(φ) = F
4. vM,g(φ ∧ ψ) = T iff vM,g(φ) = T and vM,g(ψ) = T
5. vM,g(φ ∨ ψ) = T iff vM,g(φ) = T or vM,g(ψ) = T
6. vM,g(φ→ ψ) = T iff vM,g(φ) = F or vM,g(ψ) = T
7. vM,g(∀α)φ = T iff for every u ∈ D, vM,gαu

(φ) = T .
8. vM,g(∃α)φ = T iff for at least one u ∈ D, vM,gαu (φ) = T .

Exercise 1-3: Given the following model and variable assignment, determine if the
following closed identity wffs are true: M = 〈D,I 〉;D = {1, 2, 3, 4}, g(x) = 1, g(y) =
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2,I (a) = 1,I (b) = 2,I (c) = 1,I (d) = 1,I (Px) = {2, 4}

1. x = x
2. x = y
3. a = x
4. a 6= x
5. (∃x)Px ∧ x = b

Earlier it was noted that adding = 6= to RL amounts to a superficial extension but that it
nevertheless has value. One reason this extension is valuable is becaues it allows for a more
readable translation of various English expressions into the language of predicate logic. In what
follows we will use the identity symbol to translate three different types of formulas:

1. Numerical propositions:
• There is at least n Ps where n is some number and P is a predicate
• There is at most n Ps where n is some number and P is a predicate
• There is exactly n P where n is some number and P is a predicate

2. Sentences with exceptive phrases: Every a is P except b where a and b are terms and P
is a predicate

3. Superlatives: a is the best P , where a is a name and P is a predicate

1.3.1 Numerical propositions

Let’s begin with numerical propositions, e.g. propositions of the form, “at least n are P ”, “at
most n are P ”, and “there are exactly n are P ”, where n is some numeral and P is some property.
Previous sections have shown how it is possible to translate “all ns are P” and “some n is P”
with the universal and existential quantifier, respectively. In this section, propositions involving
specific quantities are expressed by combining the identity relation along with the existential and
universal quantifier.

Consider the following propositions:

1. There are at least two zombies
2. There are at least three zombies
3. There is at most one zombie.
4. There are at most two zombies
5. There is exactly one zombie
6. There are exactly two zombies

First, let’s begin with propositions of the form at least n Ps. Proposition (1) should not be
translated as (∃x)(∃y)(Zx ∧ Zy) since the object referred to by each of the bound variables
could be the same object. That is, the existence of a single object that is Z would make
(∃x)(∃y)(Zx∧Zy) true. Thus, to ensure that there are at least two items that are Z, it is necessary
to ensure that the objects referred to by the bound variable are not identical. Proposition (1)
can thus be translated as follows:

1. (∃x)(∃y)[(Zx ∧ Zy) ∧ (x 6= y)]

This wff says that there is a zombie x and a zombie y, and the zombie x is not the same thing
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as zombie y. Thus, there are at least two distinct zombies.

Relying on the strategy we used to translate proposition (1), we can translate proposition (2) by
adding another quantifier and two more subformulas involving non-identity:

2. (∃x)(∃y)(∃z)[(Zx ∧ Zy ∧ Zz ∧ (x 6= y) ∧ (x 6= z) ∧ (y 6= z)]

This strategy can be extended for any expression of the form “there are at least n Ps”:

At least one zombie (∃x)Zx
At least two zombies (∃x)(∃y)[(Zx ∧ Zy) ∧ (x 6= y)]
At least three zombies (∃x)(∃y)(∃z)[(Zx ∧ Zy ∧ Zz ∧ (x 6= y) ∧ (x 6= z) ∧ (y 6= z)]
At least n zombies (∃x1 . . . ∃xn)(Zx1 ∧ . . . ∧ Zxn ∧ x1 6= x2...xn−1 6= xn)

Second, let’s turn to expressions that say there are at at most n Ps. One thing to note is that
this expression does not assert that there are any Ps. For example, if Tek utters (3), he does
not assert that there are any zombies but instead says that if there are any zombies, there are
no more than two zombies.

One strategy for translating propositions of the form at most n Ps is to negate an at least
n Ps proposition. For example, suppose we wanted to translate “there are at most 2 Ps”. One
way of expressing this is by saying it is not the case that there are at least three Ps. To see
this in practice, consider proposition (3), which says that there is at most one zombie. We
translate (3) by negating the proposition “there are at least two zombies.” This translation is
¬(∃x)(∃y)[(Zx ∧ Zy) ∧ (x 6= y)]. Using some equivalence rules, we can transform the negated
existential wff into the following:

3. (∀x)(∀y)((Zx ∧ Zy)→ (x = y))

This wff says that for every x and every y, if x and y are Z, then x is identical to y. That is, if
there is a zombie (call it “Tek”), then every other object that is identical to Tek, which is to say
that if there is a zombie, then Tek is the only one.

Using the same strategy as above, we can translate proposition (4) first as ¬(∃x)(∃y)(∃z)[(Zx∧
Zy ∧ Zz ∧ (x 6= y) ∧ (x 6= z) ∧ (y 6= z)] and then using equivalence rules, we can translate it
ultimately as:

4. (∀x)(∀y)(∀z)((Zx ∧ Zy ∧ Zz)→ (x = y ∨ x = z ∨ y = z))

This strategy can be extended for any expression of the form “there are at least n Ps”:

At most one zombie (∀x)(∀y)((Zx ∧ Zy)→ (x = y))
At most two zombies (∀x)(∀y)(∀z)((Zx ∧ Zy ∧ Zz)→ (x = y ∨ x = z ∨ y = z)]
At most n zombies (∀x1) . . . (∀xn)((Zx1 . . . Zxn)→

(x1 = x2 ∨ x1 = x3 . . . ∨ x1 = xn
∨x2 = x3 . . . x2 = xn
∨xn−1 = xn))

Let’s finish with expressions of the form there is exactly n Ps. Another way of expressing
there is exactly n Ps is as there is at least n Ps and at most n Ps. For consider that were
we to say that there are at least five apples and at most five apples, we would be saying that
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there are exactly five apples. Thus, proposition (5) that “there are exactly one zombie” expresses
the proposition “there at least one zombie and there is at most one zombie”. Since we already
have strategies for translating there is at least n Ps and there are at most n Ps, we only need to
conjoin these strategies to translate there is exactly n Ps.

Applying this combination of strategies to (5), “there is exactly one zombie” can be translated
as follows: (∃x)Zx ∧ (∀x)(∀y)((Zx ∧ Zy) → (x = y)). This says that there exists a zombie and
that every zombie is identical to the one that exists. More compactly, (5) can be translated as
follows:

5. (∃x)(∀y)((Zx ∧ Zy)→ x = y)

Finally, consider (6), which says that there are exactly two zombies. Here we want to say that
there exists an x and exists a y that are Z such that x 6= y (this will ensure we have two zombies)
and that for every z that is a zombie Z, z will be identical to either x or y (this will ensure that
there are no more than two zombies. Thus, (6) can be translated as follows:

6. (∃x)(∃y)(∀z)((Zx ∧ Zy ∧ x 6= y) ∧ (Zz → z = x ∨ z = y)

This strategy can be extended for any expression of the form “there is exactly n Ps”:

Exactly one zombie (∃x)(∀y)((Zx ∧ Zy)→ x = y)
Exactly two zombies (∃x)(∃y)(∀z)((Zx ∧ Zy ∧ x 6= y) ∧ (Zz → z = x ∨ z = y)
Exactly n zombies (∃x1) . . . (∃xn)(∀y)((Zx1 ∧ Zx2∧, . . . ,∧Zxn

∧x1 6= x2,∧ . . . ,∧xn−1 6= xn)
∧(Zy → y = x1 ∨ y = x2,∨ . . . ∨ y = xn))

Exercise 1-4: Translate the following English sentences into the language of predicate
logic.

1. There is at least one pumpkin
2. There are no pumpkins
3. There are at least three pumpkins
4. There are at most three pumpkins
5. There are exactly three pumpkins

1.3.2 Exceptive phrases

The identity symbol can be used to translate sentences with exceptive phrases. Let’s take a
sentence with an exceptive phrase as a closed sentence of the following form: Every a is P
except b (where a and b are names and P is a predicate). Intuitively, sentences with exceptive
phrases attribute a property P to a collection of things A but also specify that a thing b (that is
a member of A) or subset B of A lacks P .

While our focus will be on exceptive phrases of the form Every a is P except b, there are a
number of ways to use exceptive phrases in a sentence.

1. All books are good except War and Peace
2. Every book is good other than War and Peace
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3. All books are good besides War and Peace
4. Every book but War and Peace is worth reading

Notice that in each sentence, the property of goodness is attributed to everything that is a book,
but this property is specified as not belonging to a specific book, namely War and Peace. Again,
this is just one variety of exceptive phrase for we could specify that every book is good except
books that have a certain property, e.g. except romantic fiction.

Consider the sentence “Every book is good except War and Peace”. First, let’s treat this sentence
as though it doesn’t contain the exceptive phrase. The sentence without the exceptive phrase
says “for every x, where x is a book, x is good.” This sentence can be translated straightforwardly
as follows:

(∀x)(Bx→ Gx)

Next, we need to add the exceptive clause. To do this, we cannot simply conjoin a formula that
says that War and Peace is not good, e.g. ¬Gp for consider that War and Peace is a book, the
sentence says all books are good, and then turns around and says that War and Peace is not a
good book. This would turn the seemingly contingent sentence into a contradiction. What we
need to do instead then is to subtract War and Peace from the items over which the universal
quantifier operates. To do this, we can specify that the items over which the quantifier operators
should not be identical to the item (or items) we wish to exclude. That is, we wish to say that
every book that is not identical to War and Peace is good. In other words, we wish to say that
for all x if x is a book B and x is not identical to War and Peace, then x is good G:

(∀x)((Bx ∧ x 6= p)→ Gx))

What about our earlier sentence that excluded not merely a single item but a class of items? That
is, how would we translate the sentence “all books are good except works of romantic fiction”.
Here we only need to make a small

(∀x)(∀y)((Bx ∧Ry ∧ x 6= y)→ Gx)

This says that for every book B that is not romantic fiction R, that book is good G. That is,
every book is good except works of romantic fiction.

Exercise 1-5: Translate the following English sentences into the language of predicate
logic.

1. Every movie is good except The Terminator
2. All of my friends are nice except Tek.
3. Every candidate is corrupt except Trump.
4. All movies are great except horror movies.
5. All movies are great except horror movies and The Terminator.

1.3.3 Superlatives

Finally, the identity symbol is useful for translating superlative sentences. These are sentences
of the form a is the best P, where a is a name and P is a predicate. To translate sentences
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of this variety, we will make use of a two-place predicate Gxy or “x is greater than y”. Consider
the following sentences:

1. a is greater than b
2. a is the greatest
3. a is the worst

There is already a method for translating sentences like (1). We simply use the two-place
predicate G and insert the names in their respective places:

1. Gab

Next, to translate (2), we cannot simply use the formula (∀x)Gax for this says that a is greater
than every object (which would include a). When one says that a particular object a is the
greatest, they are not also saying that a is greater than itself. Rather, they are saying that a is
greater than every other thing that is not identical to a. In other words, (∀x)Gax would imply
Gaa which states that a is greater than itself. What we wish to express then is that a is greater
than everything that is not identical to a. This can be achieved with the following formula:

2. (∀x)(x 6= a→ Gax)

Here the formula states that for every x that is not identical to a, a is greater than that item.

Finally, consider (3), which says that a is the worst. Here again, we wish to say that every other
object that is not identical to a is greater than a. This is achieved by the following formula:

3. (∀x)(x 6= a→ Gxa)

In contrast to (2), (3) says that every individual x that is not a is greater than a.

Exercise 1-6: Translate the following English sentences into the language of predicate
logic.

1. A man smiled and another frowned
2. If Tek ate exactly one cookie, then there are exactly two cookies.
3. All politicians are crooks except Bernie Sanders
4. Tek loves everyone except Sally
5. Grouplove is the best music group.
6. Donald Trump is the best president.
7. Donald Trump is the worst president.

1.3.4 Derivation rules for identity

Two derivation rules are formulated for wffs involving =. The first is identity introduction. This
rule states that at any point in the proof, for any name a, you may write the wff a = a.

Definition – Identity Introduction = I

At any point in the proof, you may write a = a for any name a.
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` a = a

The intuition behind this rule is that every object is identical to itself.

For example, consider the following derivation ` (∀x)(x = x).

1 ¬(∀x)(x = x) A

2 a = a = I

3 (∀x)(x = x) ∀I, 2
4 (∀x)(x = x) ¬I, 1–3

The second derivation rule for wffs involving the identity symbol is called identity elimination.
This rule states that for any names a and b, from a = b and a wff φ where φ contains the name
a, you may derive φ(b/a). That is, you may substitute b for a in the wff φ.

Definition – Identity Elimination = E

From a = b and a wff φ, you may substitute a for b in φ or b for a in φ.

a = b, φ ` φ(a/b) or a = b, φ ` φ(b/a)

The intuition behind this rule is that if the names a and b refer to the same thing, then whatever
is true of a is true of b, and vice versa.

For example, consider the following proof:

1 a = b P
2 Lac P
3 Lbc = E, 1, 2

Next, consider the following derivation of Lca from a = b and Lcb.

1 a = b P
2 Lcb P
3 Lca = E, 1, 2

In this proof, since a = b and it is the case that Lcb, b can be replaced with a in Lcb.

Exercise 1-7: Provide a derivation for the following entailments

1. a = b, (∀x)Lxa ` (∀x)Lxb
2. a = b, b = c, (∀x)Px→ Qc ` Qb
3. Pa ` (∃x)(Px ∧ x = a)
4. Prove that identity is transitive, i.e., ` (∀x)(∀y)(∀z)(x = y ∧ y = z → x = z).
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This states that for any three items, if the first is identical to the second, and
the second is identical to the third, then the first is identical to the third.

5. Prove that identity is symmetric, i.e., ` (∀x)(∀y)(x = y → y = x). This states
that for every item, if the first is identical to the second, then the second is
identical to the first.

6. Prove that identity is reflexive, i.e., ` (∀x)(x = x → x = x). This states that
everything item is identical to itself.

1.4 Functions

Consider the following sentences:

1. Jon is Irish.
2. Tek’s father is Irish.

The translation of (1) is straightforward. Where Ix stands for the one-place predicate “x is Irish”
and j stands for the name “Jon”, (1) can be expressed as Ij. What about the translation of
(2)? At first glance, our translation of (2) might be guided by our translation of (1). Just like
the name “Jon” picks out an individual Jon, “Tek’s father” purportedly picks out a single entity,
namely the specific individual that is the father of Tek. Thus, it seems plausible to say that
“Tek’s father” is a proper name and to treat as such in RL. Under this thought process, (2)
would be translated as It.

But this translation overlooks the internal semantics that the possessive “Tek’s father” has that
a name like “Tek”, “Jon”, or “Barack Obama” lacks. A name like “Jon” means what it does simply
in virtue of the name alone, while the expression “Tek’s father” means what it does in virtue of
two semantic ingredients: (i) the meaning of the name “Tek” and (ii) the meaning of “being a
father of x”. In short, treating the possessive “Tek’s father” as though it were a name in RL
would ignore semantically significant parts of the expression.

Furthermore, we reason differently with names as opposed to possessives like the one found in
(2). In the case of (2), we can reason from “Tek’s father is Irish” to “Someone’s father is Irish”.
If the possessive was simply a name, then it seems we would be limited to reasoning to “someone
is Irish” rather than “someone’s father is Irish”.

Another thought is to treat possessives like “Tek’s father” not as names bupt as predicates
combined with names. However, with n-place English predicates, the addition of n names in
their correct places yields a sentence that expresses a proposition. That is, if an n-place predicate
takes n-names, it yields a wff that takes a value of true or false. Thus, in the case of the one-place
predicate “x is happy”, the substitution of a name “Barack Obama” for x results in a sentence
that expresses a proposition: Barack Obama is happy. Much like predicates, possessives can also
be thought of as having places, but an n-place possessive yields not a proposition that takes a
value of true or false but instead takes a value of an object in the domain. For example, replacing
“Barack Obama” for x in the one-place possessive “x’s book” results in “Barack Obama’s book”,
a phrase that refers to a single item rather than a truth value.

To fit expressions like possessives into our logical language, in this section we add symbols to
express functions. What is a function? Suppose A and B are sets (not necessarily distinct). A
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function f is a relation of each member from A to exactly one member from B, where A and B
are not necessarily distinct. In a function f ,

1. members from A are called the inputs (or arguments) of the function, while the members
from B that are put in relation to members from A are called the outputs (or values) of
the function

2. the set A itself is often called the Domain of the function, while the set B itself is called
the Codomain of the function

3. when each and every member from A is related to exactly one member in B, we say that
the function covers A

4. while each and every member from A is related to exactly one member in B, it is not the
case that every member from B is in a relation with a member from A. That is, some
members from B might not be in a relation at all.

5. Sometimes, a function f is said to be defined on a set. Were we to add sets A and B
together, the result of the set is what is called the union of A and B.

1.4.1 Symbols and syntax

Symbolically, n-place function symbols are introduced using f with or without positive integer
subscripts to ensure there are an infinite number of function symbols and superscripted positive
integers to indicate whether the function is a 1-place, 2-place, or n-place function.

Example 1: Use of the function symbol

1. f1 - one-place function
2. f23 - two-place function
3. f53 - five-place function

Generally, however, superscript integers are not used as the number of places of the function will
be clear from the rest of the notation involving the function.

In terms of syntax, there is no change to the formation rules themselves. What is instead
expanded upon is the definition of an RL-term. To achieve this, let’s define the notion of a
functional term
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Definition – functional term

If fn is an n-place function symbol (where n > 0) and α1, α2, . . . , αn is a series of n
terms (not necessarily distinct), then fn(α1, α2, . . . , αn) is a functional term.

Note that functional terms have a certain number of places (that is to say, it takes a certain
number of inputs/arguments). The inputs of the function are written to the right of the function
symbol within a pair of parentheses and each input is separated by commas.

We read f(a) as “the f of a” and f2(a, b) as “the f2 of a and b”.

Example 2: Consider the following functional terms

1. f(a) - the father of Al
2. f(b) - the brother of Bethany
3. f2(b, a) - the sum of b and a
4. f(f(a)) - the father of the father of Al
5. f(f(a, b), b) - the sum of the sum of a and b and b

One thing to note about functional terms is that unlike names and variables, functional terms
are complex. In the case of names and variables, there is no internal syntactic structure whereas
functional terms consists of a function symbol and at least one other term.

Given that functional terms are composed of a function symbol and a term and that functional
terms are themselves terms, it follows that the term(s) of a functional term can itself be a
functional term. For example, consider that f1(f2(a), a) is a functional term yet one of the terms
of f1 is a functional term. More concretely, suppose that f stands for the two-place function “the
sum of x and y”. A functional term like f(5, 3) would express “the sum of 5 and 3”. But suppose
we were to write f(f(3, 2), 1). Here we would be expressing “the sum of the sum of 3 and 2, and
1”. Still further f(f(3, 2), f(2, 1), “the sum of the sum of 3 and 2 and the sum of 2 and 1.” A less
mathematical example might be the one-place function f (the father of x). Using this function,
we might write f(f(a)), which states “the father of the father of a”.

Having added functional terms to the class of terms, it is worthwhile to reformulate our definition
of an RL-term:

Definition – RL term

An RL-term is any name, variable, or function term in RL.

The expanded notion of a term that includes function symbols does not require any revision to
the formation rules of RL:

If P is an n-place predicate and if t1, t2, . . . tn are a series of terms (not necessarily
distinct), then Pt1, α2, . . . tn is a wff.

Let’s consider two examples of RL-wffs involving functional terms.
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Example 3: wff with functional term

Suppose P is a one-place predicate and f is a function symbol. Thus, P followed by
one term is a wff and so Pf(α1) is an RL-wff. Assuming P stands for “is old” and f(x)
the expression x’s book, and α1 is a name referring to Barack Obama, then Pf(α1)
can be translated as “Barack Obama’s book is old”.

Example 4: wff with functional term

Suppose W is a two-place predicate, f is a function symbol, and d is a name. Thus,
(∀x)Wxf(d) is anRL-wff. AssumingW stands for “x wants y” and f(x) the expression
x’s money, and d refers to Donald Trump, then (∀x)Wxf(d) can be translated as
“Everyone wants Donald Trump’s money”.

1.4.2 Semantics

Next, we turn to the semantics of predicate logic involving function symbols. First, we have an
interpretation of function symbols. To define the notion of a function in precise terms, we need
the notion of a Cartesian Product.

Definition – Cartesian Product

A Cartesian Product is a mathematical operation that returns a set form at least two
(not necessarily distinct) sets such that that Cartesian Product of the sets A and B
(represented as A × B) is the set consisting of all the ordered pairs of 〈a, b〉 where
a ∈ A and b ∈ B.

Example 1: Cartesian Product of A and B

Suppose a, b ∈ A and 1, 2 ∈ B. The Cartesian Product of A and B (A × B) is
{〈a, 1〉, 〈a, 2〉, 〈b, 1〉, 〈b, 2〉}.

Example 2: Cartesian Product of B and C

Suppose 1, 2 ∈ B and a, b, c ∈ B. The Cartesian Product of B and C (B × C) is
{〈1, a〉, 〈1, b〉, 〈1, c〉, 〈2, a〉, 〈2, b〉, 〈2, c〉}.

With the notion of a Cartesian Product in place, we can define a function (f) as a subset of a
Cartesian Product.
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Definition – function

a function f from sets X to Y is a subset of the Cartesian Product of X and Y subject
to the following condition: that for every x ∈ X, x is the first component of one and
only one of the members of the subset of X × Y .

This definition of a function ensures that every item in X is related to one and only one item in
Y .

Let’s consider an example. First, suppose again we have a, b ∈ A and 1, 2 ∈ B. We saw the
Cartesian Product of A and B (A×B) was {〈a, 1〉, 〈a, 2〉, 〈b, 1〉, 〈b, 2〉}. Notice that here it is not
the case that for every item x in A, x is the first component of one and only one of the members
of the subset A×B. For example, note that the element b is the first member of the ordered pair
〈b, 1〉 and the first member of the ordered pair 〈b, 2〉. And so the Cartesian Product of A×B is
not a function.

To define a function from A to B, it is necessary that it be a subset of the Cartesian Product
from A to B that adheres to the condition that for every item x ∈ A, x is the first component of
one and only of of the subset A×B. For example, we might define f1 as the subset {〈a, 1〉, 〈b, 1〉},
or we could define f2 as the subset {〈a, 2〉, 〈b, 1〉}. In both of these examples, each item in A is
related to one and only one of the items in B.

Definition – interpretation of a function

Relative to a model M, for sets A and B, both of which are subsets of the domain
D, the interpretation of a function, I (f), from A to B is a subset of the Cartesian
Product (A×B) such that for every item x ∈ A, x is the first component of one and
only one of the members of the subset of A×B.

In other words, the interpretation of an n-place function symbol is simply a mapping of members
of the domain D to members of the domain D. The interpretation of a function can be represented
as a set of ordered pairs where the first item in the pair is the input of the pair and the second
item is the output.

In the case of functional terms, the interpretation of a functional term is the item in D that the
function maps an item in D to. That is, it is the output of the function given the function’s
input.

Example 3:

Consider the function f = {〈1, 2〉, 〈2, 3〉, 〈3, 1〉}, I (a) = 1,I (b) = 2,I (c) = 3, the
interpretation of the functional term f(a) is 1. That is, I (f(a)) = 1. Furthermore,
I (f(b)) = 3, I (f(c)) = 1.

Example 4:

Consider the function f = {〈Tek, Liz〉, 〈Liz, Jon〉, 〈Jon, Liz〉}, I (a) = Tek,I (b) =
Liz,I (c) = Jon. Here I (f(a)) = Liz, I (f(b)) = Jon, I (f(c)) = Liz.
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Earlier we made use of the notion of a denotation of a term. Since functional terms are terms,
it is necessary to expand this notion to include functional terms. In sum, the denotation of a t
when t is a functional term is the interpretation of the functional term (as we have illustrated
above). That is, [t] when t is f(a) is the interpretation of f(a), and the interpretation of f(a) is
the item in D that f maps a to.

Definition – denotation

For any modelM, variable assignment g, and term t, the denotation of t ([t]M, g) is
defined as follows:

1. I (t) if t is a name,
2. g(t) if t is a variable
3. I (f)([t1], . . . [tn]) if t is f(t1, . . . , tn)

With the notion of an interpretation in place, we turn to the valuation function. Here we do
not make any changes to the specification of the valuation function. Namely, we keep the part
of the valuation function that states that for any n-place predicate P and terms α1, . . . αn,
vM,g(Pα1 . . . αn) = T iff ([α1]M . . . [αn]M ∈ I (P ).

1.5 Definite descriptions

In English, when we wish to refer to a specific individual, one way that we do this is by using that
entity’s name. For example, if I wish to refer to Barack Obama, I use the proper name “Barack
Obama”. Similarly, in classical predicate logic, when we wish to refer to a specific individual,
we use a name, e.g. b. In English, however, we often refer to specific individuals in other ways
besides using the thing’s proper name. And, it is useful to have another way of referring to
specific individuals since we do not always know the name of the thing that we wish to refer.
One way that we refer to specific individuals is by giving a description that purports to describe
that specific individual alone.

There are at least two ways to describe things, only one of which will be of concern to us here.
Indefinite descriptions are phrases of the form “an A” or “a A”. For example, “a book” or “a person
I once knew”. These types of descriptions are thought to describe an object but do so in a way
that is ambiguous, viz., the description potentially fits more than one object. And, indefinite
descriptions do not require any expansion of RL since expressions like “a man is happy” can be
captured using the existential quantifier, e.g. (∃x)(Mx ∧Hx).

Definite descriptions are said to be phrases of the form “the A”. For example, “the man” or
“the first president of the United States”. These types of descriptions are thought to describe an
object and do so in a way that the description fits one and only one object.

This characterization of descriptions is somewhat crude for at least two reasons. First, there are
a number of other expressions that might qualify as indefinite or definite descriptions but they
don’t take the form of “a A” or “the A respectively. Some have argued that proper names can
be construed as definite descriptions. For example, “Barack Obama” is shorthand for “the 44th
president of the United States” or some other description that would only fit Barack Obama.
And at least at first glance, this makes intuitive sense for what is a name besides a shorthand
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way of referring to the complete set of descriptions one has in one’s mind. Another example
might involve descriptions that involve possessive pronouns. For example, suppose Tek uttered
“My father is going to be angry when he gets the news.” The description “my father” seems to
fit one and only one object Tek’s father but does not have the form of “the father of Tek”. A
second problem with construing definite descriptions in this way is that there are a number of
instances of “an A” or “the A” that don’t qualify as indefinite and definite descriptions respectively.
For example, if Tek uttered “John is the man” or “Mary is a doctor”, the expressions the man
and a doctor are predicates rather than as kinds of descriptions. Let’s put aside these issues,
however, and treat indefinite and definite descriptions as expressions of the form “a A” and “the
A” respectively.

Consider the following definite descriptions:

1. The first woman in space
2. The mother of Barack Obama
3. The present Queen of England

At first glance, we might treat these descriptions like names. However, there are at least two
problems with doing this. First, in contrast to names which are simple expressions, definite
descriptions are composite expressions. That is, the definite descriptions above consist of (i) the
definite article “the” along with (ii) a predicate expression that applies to one individual.

Second, definite descriptions are similar to proper names in that they purportedly pick out one
and only one (a unique) individual. That is, insofar as “the first black president of the United
States” is a definite description, it purports to pick out a single individual. However, definite
descriptions are different from proper names in that they do not pick out a unique individual by
simply referring to that thing. That is, we can view proper names as directly referring to their
objects, viz., as acting as indices or name-tags of things. In contrast, definite descriptions refer
to their objects not directly but providing a description that would only fit a single item. For
example, “the first black president of the United States” refers to a unique object by providing
a description that fits one and only one object. Like a name it picks out a single individual,
but unlike a name it picks out this object by providing a description that fits one and only one
object, namely Barack Obama.

1.5.1 Symbols and syntax of definite descriptions

To capture the composite structure (definite article and predicate), we first expand RL by adding
a new symbol. That is, let’s refer to ι as the “iota” or “the” operator (technically, the symbol
used for definite descriptions is the reversed iota symbol).

Next, we need to adjust the syntax of RL by modifying both our definition of a RL-term and a
RL-wff. Namely, we need to include the following addition to our definition of a term:

Definition – iota-term (definite description)

If φ is a RL-wff and x is a variable, then ιxφ is a iota-term (definite description).

Since we are including a new kind of expression in the class of RL-terms, it is necessary to make
this explicit in our official definition of an RL-term.



1.5 Definite descriptions 24

Definition – RL-term

An RL-term t is any name, variable, functional term, of iota-term in RL.

Let’s consider some examples of RL-terms involving the iota operator.

Example 1: Definite descriptions

1. ιxMx - the man
2. ιx(Ax ∧Mx) - the angry man
3. ιx(Ax ∧Mx ∧ (∀y)Lxy) - the angry man that loves everyone
4. ιx(Mx ∧ x = ιyKy) - the man who is identical to the king

Now that we have expanded the notion of an RL-term, we modify our definition of an RL-wff to
accommodate the use of terms involving descriptions.

If P is a n-place predicate, where n ≥ 1, and t1 . . . tn are terms (not necessarily
distinct) in RL, then Pt1 . . . tn is a wff in RL.

Example 2: Consider the following RL-wffs involving the iota operator

1. P (ιxMx) - The man is a person
2. L(a, ιxMx) - Al loves the man
3. b = ιxMx - Bob is identical to the man
4. (∃x)Wx∧ = ιyDy - Some woman is identical to the doctor

1.5.2 Semantics of definite descriptions

Next, we turn to the semantics of definite descriptions. Since ιxφ is a term, we specify the
denotation of the term [ιxφ] as the single object u1 that ιxφ denotes. The idea here is that
definite descriptions have meaning in themselves, and the meaning of any definite description is
simply the object it denotes (or refers to).

[ιxφ]M,g is the unique individual u ∈ D such that vM,gxu
φ = T

The idea behind this treatment of definite descriptions is not that the object u1 that the definite
description refers to is the unique object u1 ∈ D that would make the wff containing the definite
description true. For example, take the sentence “the first black president is a republican”.
Intuitively, the definite description “the first black president” would refer to Barack Obama but
even if this is the referent of the definite description, this item would not make the sentence true
(since Barack Obama is a democrat rather than a republican).

The idea instead is that the denotation of the definite description is the object that would make
“x is the first black president” true, viz., the u ∈ D that would make v(Bx) = T . That is,
[ιxBx]M,g is the unique individual u1 ∈ D such that vM,gxu

(Bx) = T .
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However, this interpretation of wffs involving the iota operator is problematic for a number of
reasons.

1.5.3 Problems with treating definite descriptions as names

The first problem with treating definite descriptions as denoting phrases (like names) is when
there is more than one u ∈ D that would makeM, gxuφ true, then [ιxφ]M,g is undefined. Suppose
we were to look out and see two men with hats and then utter “the man in the hat is menacing”.
Suppose the first man is u1 and the second man is u2. It seems that “the man in the hat” is
undefined since there is no unique individual that would make vM,gxu

Mx = T since both u1 and
u2 could make the wff true. And, if “the man in the hat” is undefined, then so is the sentence
“the man in the hat is menacing”. And if “the man in the hat is menacing” is undefined, then it
is neither true nor false (a violation of the principle of bivalence).

The second problem involves a set of cases where the definite descriptions apparently refer to
non-existent objects. That is, there isn’t any u ∈ D such that vM,gxu

φ = T . The main problem
is that if there is no u ∈ D such that vM,gxuφ = T then ιxφM,g is undefined. We will consider
two cases of this second problem.

The first case involves the law of the excluded middle (LEM). The LEM states that φ ∨ ¬(φ) is
a tautology (valid wff) for any φ. But consider the proposition “The present King of France is
either bald or not bald”.

Suppose we translate “the present King of the France is bald” as B(ιxKx). Since there is no
unique individual u ∈ D such that vM,g(Kx) = T , [ιxKx]M,g is undefined. This has ramifications
for B(ιxKx) because if [ιxKx]M,g is undefined, then so is B(ιxKx), and if B(ιxKx) is undefined,
then we have a wff in our language that is neither true nor false. And, if we have a wff that is
neither true nor false, then we have a violation of the principle of bivalence.

In short, if we treat definite descriptions that fail to refer as undefined, then we have a coun-
terexample to the law of excluded middle. Namely, φ∨¬(φ) is not a tautology when either φ or
¬(φ) refers to a non-existent.

Another option might be to treat definite descriptions that fail to refer as false, but this would
serve us no better since it would mean that both φ and ¬(φ) are false. And again, φ ∨ ¬(φ) is
not a tautology.

The second case involves negative existentials. Negative existentials are propositions where a
non-existent is the subject of a proposition of the following form:

x does not exist (where x is a non-existent entity)

Examples of negative existentials include propositions like “Cerberus does not exist” and “The
unicorn in my bedroom does not exist”. Suppose that S is a negative existential proposition and
S contains a definite description. Intuitively, v(S) = T since the the object that the definite de-
scription refers to does not exist. However, in order for the definite description to be meaningful,
it must refer to some unique thing in the domain. And, if it refers to something in the domain,
then that thing exists. And so, v(S) = F , which means that non-existent entities really do exist.

A third problem with treating definite descriptions as referring (denoting) phrases involves the
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substitutivity principle. This principle says that co-referring expression (i.e., expressions that
refer to the same thing) can be substituted for each other without changing the truth-value of
the wff in which the substitution is made. For example, if Pa and a = b, then Pb. However,
consider the following proposition:

1. Tek wanted to know if Scott was the author of Waverley.

Let’s suppose that (1) is true. Now consider the following argument:

1. Tek wants to know if Scott was the author of Waverley.
2. Scott = the author of Waverley.
3. Therefore, Tek wants to know if Scott is Scott.

Thus, treating definite descriptions as though they were referring phrases seems to require us to
reject the substitutivity principle.

The problem in the above example is that if the principle of substitutivity is true, then given
the identity of Scott and the author of Waverley, we can substitute “Scott” for “the author of
Waverley” in (1). This leads to the false conclusion that Tek wonders whether Scott is identical
to Scott.

From here we have at least two options. First, we might take the above as a genuine analysis of
definite descriptions and accept that the principle of bivalence is not universally true. Were we
to accept this option, we might either (i) point out a certain limitation of logical analysis or (ii)
propose an alternative (deviation) from classical logic. Along the lines of (ii), one option would
be to pursue a multi-valued approach to logic, where some wffs given the truth value of “neither
true nor false” or “indeterminate”. Second, we might try to take the above as a faulty analysis
of definite descriptions. Rather than giving up on the possibility of logically analyzing sentences
with definite descriptions or giving up on the universality of the principle of bivalence, we might
instead resort to a different analysis than what is given above. In what follows, we consider two
possible approaches that aim to logically treat definite descriptions while aiming to preserve the
principle of bivalence.

The first approach we consider is credited to Gottlob Frege. This approach begins by pointing
out that there is a deficiency in natural language insofar as it allows for expressions that fail
to refer to things. In particular, definite descriptions in natural languages allow for speakers to
express content that aims to refer to a unique thing which either does not exist or is not unique.
This deficiency can be overcome with a better, more ideal language. In such a language, any use
of a definite description would always refer to something. Frege’s solution then was to posit the
existence of a special object called the nil entity, which definite descriptions would refer to when
they failed to pick out a unique object. Doing this would allow for assigning sentences containing
a definite description of a truth value of T or F.On this approach, we revise the interpretation
of [ιxφ]D,g as follows:

On the condition there exists a unique individual u ∈ D, [ιxφ]D,g is that unique individual u ∈ D
such that vM,gxu

φ = T , otherwise [ιxφ]D,g = u0 where u0 is the nil individual.

To illustrate, suppose again we are evaluating the sentence “The King of the United States
is bald”. On the Fregean analysis, since there is no King of the United States, the definite
description “the King of the United States” refers to the nil individual. And, assuming that the
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nil individual is not bald (not found in the interpretation of B), it follows that the sentence
is false, viz., v(B(ιxKx)) = F . So, in short, on Frege’s analysis, sentences involving definite
descriptions that fail to refer to a unique object are false. And, in calling these sentences false
rather than neither true nor false, the principle of bivalence is preserved.

The second approach we consider is due to Bertrand Russell. Similar to Frege’s approach, (i) the
principle of bivalence is preserved, (ii) the underyling problem with definite descriptions is due
to a deficiency in natural language, and (iii) the proper correction to these problems is through
an ideal (logical) language.

The supposed problem with natural language is that definite descriptions are treated as though
they were singular terms (names). Roughly speaking, definite descriptions and proper names
both appear to have the same syntactic role in that they are the subjects of sentences. For
instance, compare the following:

1. Donald Trump is the President of the United States
2. The author of the Art of the Deal is the President of the United States.

In (1) and (2), the proper name and the definite description both play the role of the subject
and receive the same predicate. However, Russell argued that to treat definite descriptions as
names would be to mistakenly read the grammatical form of the sentence into its logical form
(a mistake similar to reading “everyone/someone” as though they referred to some object rather
than to treat them as quantificational expressions).

The way forward is not, however, to directly define the iota operator but instead develop a
method such that for any wff containing the iota operator (a definite description), an equivalent
RL-wff without the iota operator can be provided.

Let us return then to the sentence “the King of the United States is bald”. This sentence was
translated as B(ιxKx). According to Russell, sentences of this type make three claims:

1. an existence claim: (∃x)Kx, viz., there exists an x such that x is the King of the United
States

2. a singularity (or uniqueness) claim: (∀y)(Ky → y = x), viz., for any individual y, if that
individual is King of the United States, then that individual is x

3. a predication claim: Bx, viz., x is bald.

Putting all three of the above claims together, “the King of the United States is bald” can be
translated as (∃x)(Kx ∧ (∀y)(Ky → y = x) ∧Bx). That is, there is exactly one individual that
has the property of being King of the United States and that individual is bald.

Given this treatment of definite descriptions, “the present King of the United States is bald” can
be false in at least three different ways. First, there can fail to be an individual that is the King
of the United States. Second, there can fail to be a single (exactly one) individual that is the
King of the United States. Third, the single individual that is the King of the United States
may not be bald. And so, Russell has a way to treat definite descriptions while preserving the
principle of bivalence. This is done by treating sentences with definite descriptions as complex
quantificational expressions.

Russell’s treatment of definite descriptions also illustrates an ambiguity found in negative sen-
tences involving said descriptions. For instance, consider the sentence “the present King of the
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United States is not bald”. This sentence is ambiguous. It says one of the following:

1. there does not exist a present King of the United States that is bald
2. there exists a present King of the United States but this individual is not bald

Each of these sentences can be translated using Russell’s approach:

1. ¬(∃x)(Kx ∧ (∀y)(Ky → y = x) ∧Bx)
2. (∃x)(Kx ∧ (∀y)(Ky → y = x) ∧ ¬Bx)

Exercise 1-8: Translate the following wffs into the language of predicate logic using
the following translation key: j : John, s : Sally, Ax : x is angry, Dx : x is a dictator,
Lxy : x loves y

1. John is angry
2. The man is angry
3. The president is a dictator
4. The man is identical to the president.
5. John loves the dictator.
6. The dictator loves John.
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