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PHIL012. SYMBOLIC LOGIC – PREDICATE LOGIC – DERIVATIONS 

 

Predicate Derivations: Four Quantifier Rules 

 

The proof system for RL is RD, which consists of PD+ (the proof system from propositional 

logic) plus additional derivation rules for quantified formulas.  

 

Universal Elimination (E) 

 

 Universal Elimination (E) 

From any universally quantified proposition 

(x)P, we can derive a substitution instance 

P(a/x) in which all bound variables are 

consistently replaced with any individual 

constant (name). 

  

(x)P 

P(a/x) 

 

 



E 

 

 

 

 

The idea is that if you have a universally quantified proposition (x)P, you can move forward a 

step in the proof with a proposition P(a/x) that is the result of removing the universal quantifier 

and replacing any bound variables with any name of your choosing.  

 

Example #1 

 

1 x)Px P 

2 Pa E 

3 Pb 
4 Pe 

 

Replacement must be uniform.  

 

1 x)Pxx P 

2 Paa 1E – OK! 

3 Pab 1E – NO! 

4 Pba 1E – NO! 

 

Existential Introduction (I) 

 

 Existential Introduction () 
From any possible substitution instance 

P(a/x), an existentially quantified proposition 

(x)P can be derived by consistently 

replacing at least one individual constant 

(name) with an existentially quantified 

variable. 

  

P(a/x) 

(x)P 
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The idea is that if you have a non-quantified proposition Pa, you can move forward a step in the 

proof with an existentially quantified proposition (x)P(x/a) that is the result of uniformly 

replacing at least one name with an existentially quantified bound variable. 

 

Example #1 

 

1 Pa P 

2 Rbb P 

3 (x)Px 1I 

4 (x)Rxx 2I 

 

Replacement must be uniform but you need only replace one name. 

 

1 Lab P 

2 Rbb P 

3 (x)Lax 1I – OK! 

4 (x)Lxa 1I – OK! 

5 (x)Lxx 1I – NO! 

6 (x)Rxx 2I – OK! 

7 (x)Rbx 2I – OK! 

   

Practice 

1. PaaRbb, PbbRcc, (x)Pxx ├ RbbRcc 

2. (x)Rx(x)Mx, Ra ├ (x)Mx 

3. Pab, (x)(y)Pxy(x)Zxx ├ Zaa 

4. (x)(y)Pxy, PabRc, PdeRc ├ (x)(RxRx) 

5. (x)(y)Pxy, PaaLab ├ (y)(x)Lxy 

6.* Labc, (x)(y)(z)Lxyz(x)Pxxx, (x)Pxxx(x)(y)(z)Mxyz ├ Mdab 

 

Universal Introduction 

 

 Universal Introduction () 

A universally quantified proposition (x)P 

can be derived from a possible substitution 

instance P(a/x) provided (1) a does not occur 

as a premise or as an assumption in an open 

subproof, and (2) a does not occur in (x)P. 

  

P(a/x) 

(x)P 

 



 
 

 

 

 

The idea is that if you have a non-quantified proposition Pa, you can move forward a step in the 

proof with a universally quantified proposition (x)P(x/a) that is the result of uniformly 

replacing each name with universally quantified bound variables. However, the names cannot 

occur in the premises, as the assumption in an open subproof, and cannot occur in the universally 

quantified proposition (x)P(x/a) derived.  

 

Example #1 
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1 (x)Pxx P 

2 Paa 1E 

3 (y)Pyy 2I 

 

 

 

 

Example #2 

 

1  Raa A 

2  Raa 1R 

3 RaaRaa 1-2I 

4 (x)(RxxRxx) 3I 

 

In the above example, (I) is applied to line 3 even though ‘a’ is in the assumption. However, 

the subproof involving ‘a’ is no longer open.  

 

First Violation of Restriction #1 

 

1 Paa P 

2 (x)Pxx 1E — NO! 

 

Second Violation of Restriction #1 

 

1  Raa A 

2  (x)Rxx 1I — NO! 

 

Violation of Restriction #2 

 

1 (x)Pxx P 

2 Paa 1E 

3 (y)Pya 2I — NO! 

 

Existential Elimination 

 

 Existential Elimination (E) 

From an existentially quantified expression 

(x)P, an expression Q can be derived from 

the derivation of an assumed substitution 

instance P(a/x) of (x)P provided (1) the 

individuating constant a does not occur in 

any premise or in an active proof (or 

subproof) prior to its arbitrary introduction 

in the assumption P(a/x) and (2) the 

  

(x)P 

 P(a/x) 

 . 

 . 

 . 

 Q 

Q 
 

 


 

 

 

 

 

E 



4 

 

individuating constant a does not occur in 

proposition Q discharged from the subproof. 

 

The idea is that if you have an existentially quantified proposition (x)P, you can derive Q 

provided you assume P(a/x) then derive Q with that subproof . However, (1) ‘a’ in P(a/x) cannot 

occur in the premise or an active proof and (2) ‘a’ from P(a/x) does not occur in Q.  

 

Example #1 

1 (x)Px P 

2  Pa A / E 

3  (y)Py 2I 

4 (y)Py 1, 2-3E 

 

First Violation of Restriction #1 

 

1 (z)Wzz P 

2 WbbLc P 

3  Wbb A / E 

4  Lc 2,3E 

5 Lc 1,3-4I— NO! 

 

Second Violation of Restriction #1 

 

1 (z)(PzzLzz) P 

2 (z)Pzz P 

3  PbbWcc A  

4   Pbb A / E 

5   Wcc 3,4E 

6  Wcc 2, 4-5E — NO! 

 

Violation of Restriction #2 

 

1 (z)Wzz P 

2  Wbb A / E 

3  (x)Wbx 2I 

4 (x)Wbx 1, 2-3 E — NO! 

 

Practice 

1. (x)(y)Lxy, (x)Lxx(x)(y)Lxy ├ (x)(y)Lxy 

2. (x)Pxx ├ (x)(PxxRx) 

3. (x)(y)Pxy ├ (y)(z)Pyz 

4. (x)(PxxPxx)Sa ├ Sa 

5. (x)(PxxPxx)(x)Mx ├ (x)(MxMx) 

6.(x)(y)(z)(LxyLyz), (x)(y)Lxy(z)(y)Pzy ├ (x)Pxx 
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Predicate Derivations: Quantifier Negation 

 

In addition to the four introduction and elimination rules for quantified propositions, we can add 

to RD an equivalence rule (or rule of replacement). This rule, known as Quantifier Negation, 

allows us to replace negated quantified subformulas with non-negated quantified subformulas, 

and vice versa.  

 

 Quantifier Negation (QN) 

From a negated universally quantified 

expression (x)P, an existentially 

quantified expression (x)P can be derived, 

and vice versa. Also, from a negated 

existentially quantified expression (x)P, a 

universally quantified expression (x)P can 

be inferred, and vice versa.  

  

(x)P ┤├ (x)P 

(x)P ┤├ (x)P 

 

QN 

QN 

 

Example 1 

 

1 (x)Px P 

2 (x)Px 1QN 

3 (x) Px 2QN 

 

Remember, since (QN) is a rule of replacement, it can be applied to subformula 

 

1  (x)PxPa P 

2 (x)PxPa 1QN 

Practice 

1. (x)Pxx(x)Rx, (x)Rx ├ (x)Pxx 

2. (x)(y)Pxy(x)Zx, (x)(y)Pxy ├ (x)Zx 

3. (x)(y)Pxy, (x)(y)Pxy(z)Zz ├ (z)Zz 

4. (x)Px ├ (x)(PxZx) 

5. (x)(z)Pxz, (x)(z)Pxz(z)Lz├ (w)(LwMw) 

6. ├ (x)Px(x)(PxPx) 


