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HANDOUT #6 – PREDICATE LOGIC – SYMBOLS, SYNTAX, SEMANTICS, TRANSLATION 

 

Predicate Logic: Introduction 

 

The language of PL has three principal strengths: 

 

(S1) for any argument that is valid in PL, there is a corresponding valid argument in 

English. This means that some of the arguments that we wish to represent and the 

reasoning we do in English can be represented in the more precise language of PL. 

(S2) There are decision procedures for PL! We can use tables and trees to mechanically 

check whether an argument is valid or invalid in PL, whether a set of propositions are 

consistent or inconsistent, etc.  

(S3) There is a proof system (PD) for PL. That is, we have a codified set of rules that 

justify various derivations or moves forward in arguments. 

 

The principal weakness of PL is the following: 

 

(W1) It is not expressive enough. That is, there are some valid arguments in English that 

cannot be represented in PL. For example, 

 

All men are mortal. 

Socrates is a man. 

Socrates is mortal. 

 

The reason that the above argument cannot be represented in PL is that PL treats sentences as 

wholes. The validity of the above argument, however, depends upon how parts of the sentences 

relate to each other, namely how Socrates belongs to a class of things (i.e. men) and how the 

class of men form a part of a more expansive class, namely mortals. In order to capture how parts 

of sentences relate to each other, we can devise a more expressive logical language, one that 

analyzes sentences at the sub-sentential level. This is the language of predicate logic (or the logic 

of relations): RL. 

 
 Description of the Symbols of the RL Symbols of RL 

1 individual constants (names) Lower case letters, a through v with or without 

numerical subscripts. 

 

2 n-place predicates  Upper case letters, A through Z with or 

without numerical subscripts 

 

3 individual variables  Lower case letters, w through z with or 

without numerical subscripts 

 

4 truth-functional operators and scope indicators from PL 

 
, , , , , (, ), [, ], {, } 

 

5 Quantifiers ,  
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While we will talk more about what each of these items means (semantics), the ways in which 

they can be put together to form wffs (syntax), and how to translate from predicate logic into 

English, here is a very simple way to think about each: 

 

individual constants (a, b, c, d, e) are like proper names, they refer to specific objects. 

For example, George Washington, Hurricane Sandy, Gandhi. 

n-place predicates (A, B, C, D, E) are like predicate terms that refer to properties that 

belong to objects. For example, is blue, is happy, is taller than, etc. 

individual variables are like placeholders for objects, e.g. in “x is happy” x is a 

placeholder for some name we could insert to make that statement true or false. 

quantifiers are just terms that specifying the quantity of the objects that have some 

property. For example, Some, All, Many, At least one x is green. 

 

Predicate Logic: Syntax (Formation Rules) 

 

(i) An n-place predicate P followed by n terms (names or variables) is a wff in RL. 

(ii) If P is a wff in RL, then P is a wff in RL. 

(iii) If P and Q are wffs in RL, then PQ, PQ, PQ, and PQ are wffs in RL. 

(iv) If P is a wff in RL containing a name a and if P(x/a) is what results from substituting 

the variable x for every occurrence of a in P, then (x)P(x/a) and (x)P(x/a) are wffs in 

RL. 

(v) Nothing else is a wff in RL except that which can be formed by repeated applications 

of (i)–(iv). 

 

The above rules can be used to determine whether a formula is a wff. Here is an example: 

 

Example: show that (z)PzRa is a wff in RL 

1 Ra is a wff Rule (i) 

2 Pa is a wff Rule (i) 

3 If Ra is a wff, then Ra is a wff. Line 1, 

rule (ii) 

4 If Pa is a wff, then Pa is a wff. Line 2, 

rule (ii) 

5 If Pa is a wff in RL and Pz is what results from replacing a’s with z’s, then (z)Pz 

is a wff. 

Line 4, 

Rule (iv)  

6 If Ra is a wff and (z)Pz is a wff, then (z)PzRa is a wff in RL. Line 3, 

5, rule 

(iii) 

 

Classroom Exercises: Using the formation rules, show that the following propositions are wffs in RL, 

where ‘Pxy’ is a two-place predicate while ‘Rx’ and ‘Zx’ are one-place predicates: 

1. RaPaa 

2. RaaPa 

3. (x)Pxx 

4. (x)Px 

5. (y)Pyy 

6. (x)Pxx(x)Zx 
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More Syntax: Quantifier Scope and Further Terminology 

The scope of the quantifiers is similar to the scope of the truth-functional operator for negation. 

That is, it applies to the wff (open or closed) to its immediate right.  

 

(x)Px 

 

However, there is some ambiguity when the formula upon which quantifiers operate are 

complex. Consider the following: 

 

(x)PxRx 

 

Does the quantifier apply to ‘Px’ alone or does it apply to the complex ‘PxRx’? In order to 

resolve this ambiguity, scope indicators (open and closed parentheses, braces, and brackets) are 

used to indicate the scope of the quantifier. Thus, in the above example, the universal quantifier 

applies only to ‘Px’ while in the following formula, it operates upon ‘PxRx’: 

 

(x)(PxRx) 

 

Quantifiers can have other quantified formula in their scope. For example, in the following 

formula, the existential quantifier has the formula to its right in its scope, i.e. ‘(y)(PxRy)’ 

 

(x)(y)(PxRy) 

 

Quantifiers specify the quantity of specific variables. For example, in the above formula, ‘(x)’ 

quantifies ‘xs’ while ‘(y)’ quantifies ‘ys’. We call a variable that is quantified by a quantifier 

that quantifies for that specific variable, a bound variable. A variable that is not bound is a free 

variable. We call a variable is in the scope of a quantifier, irrespective of whether the quantifier 

quantifies for it, a scoped variable.  

 

Examples:  

(x)Fx, x is bound and scoped 

(x)Rxy, x is bound and scoped but y is free and scoped 

(x)(RxLx), both xs are bound and scoped 

 

Open formula An open formula is a wff consisting of an n-place predicate P followed 

by n terms where one of those terms is a free variable  

 

Closed formula A closed formula is a wff consisting of an n-place predicate P followed 

by n terms where every term is a name or a bound variable. 

 
Classroom Exercises: Determine whether the formula is open or closed and whether variables are 

bound, scoped, and/or free. 

1. (x)Pxy 

2. (x)(y)(z)(PxyLz) 

3. (x)(y)(z)PxyLz 
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Semantics: The Absolute Basics 

There is a long discussion of the semantics of RL in your text, but here are the absolute basics.  

 

In the semantics of PL, single propositional letters are assigned truth values (T or F). This 

is not possible in RL since individual constants (names), predicate terms, and quantifiers 

are not true or false.  

 

The first key semantic concept is the domain of discourse (abbreviated as ‘D’) which are all of 

the things we want to talk about. For example, numbers, physical objects, favorite movies, etc. 

We indicate what objects are in the domain by either listing them like as follows: 

 

D = {Jon, Vic, Liz, Tek} 

 

Or, indicating some property they all have in common: 

 

D = {x | x is a living human being}. 

 

The above is read as “the domain consists of all beings that have the property of being a living 

human being.” 

Next, there is what is called an interpretation (abbreviated as ‘I ’). An interpretation 

does three things: 

 

(i) it assigns objects in the domain to names in RL: 

 

Example of (i): I (a): Liz; I (b): Vic; I (c): Jon; I (c): Tek 

 

(ii) it assigns sets of objects or sets of ordered n-tuples in the domain to predicates in RL: 

 

Example of (ii): I (Hx): {Jon, Liz, Vic} 

You can think of ‘Hx’ as ‘x is happy’, an interpretation of ‘x is happy’ 

picks out all of the happy objects.  

 

Example of (ii): I (Lxy): {Jon, Liz, Liz, Vic} 

You can think of ‘Lxy’ as ‘x loves y’, an interpretation of ‘Lxy’ picks out 

pairs of objects that are ordered in a certain way. Since Jon loves Liz is 

different than Liz loves Jon, we need a way of representing the former that 

cannot be confused with the latter.  

 

Jon loves Liz: Jon, Liz 

Liz loves Jon: Liz, Jon 

 

(iii) it assigns truth values to closed formula in RL: 
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Example of (iii): v(Lca)=T; v(Lac)=T; v((x)Lxa)=F 

 

Truth values are assigned to non-quantified formula as follows: a closed formula consisting of a 

predicate P followed by the appropriate number of names ai is true if and only if the 

interpretation of ai is in P.  

 

What does this mean?  

Example #1: ‘Hx’ picks out a set of things. The interpretation of ‘Hx’ selects Jon, Liz, 

and Vic. The interpretation of ‘a’ selects Liz. Since the interpretation of ‘a’ is in the 

interpretation of ‘Hx’, then ‘Ha’ is true.  

Example #2: ‘Lab’ is true if and only if the interpretation of a, b is in the interpretation 

of L. ‘Lxy’ picks out a set of pairs of things: {Jon, Liz, Liz, Vic}; since the 

interpretation of ‘a, b’ refers to the pair Liz, Vic, and this is in the set of things picked 

out by ‘Lxy’ then ‘Lab’ is true.  

 

Truth values are assigned to quantified formula (very roughly, see text) as follows:  

Example #1: ‘(x)Px’ is true if every object in the domain is P.  

Example #2: ‘(x)Px’ is true if and only if at least one object in the domain is P. 

 

Classroom Exercises: RL Semantics 

 

Practice 

Let D = {a, b, c}, I (a)=a, I (b)=b, I (c)=c, I (Hx)= {a, b, c}, I (Lxy)= {a, a, b, c} 

1. Ha 

2. (x)Hx 

3. (x)Hx 

4. (x)Hx 

5. (HaHb)Hc 

 

1. Lab 

2. Laa 

3. Lba 

4. (x)Lxx 

5. (x)Lxx 

6. (x)Lxx(x)(y)Lxy 

 

  



6 

 

Predicate Logic: Translation 

 

The formal language of RL can be used to express a fragment of the English language. The first 

step to any translation is to construct a translation key. A translation key does three things: (1) it 

stipulates the domain of discourse, (2) it interprets all names and (3) interprets all n-place 

predicates. Consider the following key. 

 

D: Living human beings 

j: Jon 

f: Frank 

Txy: x is taller than y 

 

Using the above translation key we can translate various English sentences into RL and closed 

formula in RL into English sentences.  

Here is a quick guide: 

 
Predicate logic formula Read in pseudo-English as… 

Ha a is H. 

Tab a is taller than b 

(x)Hx Some x is H.  

At least one x is H. 

(x)Hx Every x is H. 

(x)(y)Txy Every x is taller than y. 

 

Note that ‘(x)’ can be used to translate pseudo-English expressions like ‘for every x’, ‘for all 

xs’, ‘for each x’. Likewise ‘(x)’ can be used to translate pseudo-English expressions like ‘for 

some x’, ‘some xs’, or ‘there exists an x’. 

Using the above translation key we can translate the following English sentences: 

 

(1) Jon is taller than Frank. 

(2) Frank is taller than Jon. 

(3) It is not both the case that Jon is taller than Frank and Frank is taller than Jon. 

 

into RL as follows: 

 

(1*) Tjf 

(2*) Tfj 

(3*) (Tjf  Tfj) 

 

The method for translating English expressions into quantified formula in RL is an art and so it 

can help to take a step-by-step method. One way to do this is to create a bridge translation 

between wffs in RL and sentences in English, and then use this bridge translation to translate into 

more colloquial English. A bridge translation is a half-way point between English and RL; it’s 

not quite English and not quite RL: it’s pseudo-English. 

Consider the following translation key 
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D: human beings (living or dead) 

Hx: x is happy 

Zx: x is a zombie 

Mx: x is mortal 

Rx: x is murderer 

Wx: x is wrong 

 

Now consider the following predicate wffs: 

 

(1) (x)Hx 

(2) (x)Zx 

(3) (x)(ZxHx) 

(4) (x)(ZxHx) 

(5) (x)(ZxHx) 

 

Let’s consider a translation of (1) by taking one part of the formula at a time. ‘(x)’ is translated 

as ‘For every x’, ‘for all xs’, ‘for each x’. The second part of (1) says ‘x is H’ or ‘x is happy’. 

Putting these two parts together we get a bridge translation. Here is a bridge translation of (1): 

 

 (1B) For every x, x is happy. 

 

Using this bridge translation, we can more easily translate (1) into colloquial English:  

 

(1E) Everyone is happy.  

 

Consider a bridge translation of (2): 

 

(2B) For every x, x is not a zombie. 

 

Using (2B) we can render (2) into something more natural: 

 

(2E) Everyone is a not a zombie. 

(2E*) No one is a zombie. 

 

Consider a bridge translation of (3): 

 

(3B) For every x, if x is a zombie, then x is happy. 

 

In the case that (3B) does not make it obvious how to render it into English, then you can try to 

make (3B) more concrete by expanding the bridge translation as follows: 

 

(3B+) Choose any object you please in the domain of discourse, if that object is a zombie, 

then it will be also be happy. 

 

Rendered into standard English, (3B) and (3B*) reads: 
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(3E) Every zombie is happy. 

 

Consider a bridge translation of (4): 

 

(4B) For every x, if x is a zombie, then x is not happy. 

 

An additional bridge translation is the following: 

 

(4B*) Choose any object you please in the domain of discourse consisting of human 

beings (living or dead), if that object is a zombie, then it will not be happy. 

 

In colloquial English this is the following: 

 

(4E) No zombies are happy. 

 

Notice that in the case of (5), which is (5) (x)(ZxHx), the main operator is negation. One 

way to translate this by first translating ‘(x)(ZxHx)’: 

 

Every zombie is happy. 

 

Next, translate the negation into English by putting ‘Not’ in front of this expression. That is, (5) 

reads: 

 

(5E) Not every zombie is happy. 

 

Finally, consider universally quantified expressions not involving  as the main operator 

 

(6) (x)(ZxHx) 

(7) (x)(ZxHx) 

(8) (x)(ZxHx) 

 

These are  

 

(6E) Everyone is a happy zombie. 

(7E) Everyone is either a zombie or happy. 

(8E) Everyone is a zombie if and only if they are happy. 

 

Our focus thus far has been on the use of the universal quantifier to translate RL formula into 

English. Next, we turn to RL formulas that involve the existential quantifier. Consider the 

following predicate wffs: 

 

(1) (x)Hx 

(2) (x)Zx 

(3) (x)Zx 

(4) (x)(Zx  Hx) 

(5) (x)Zx  (x)Hx 



9 

 

 

Let’s consider a translation of (1) by taking one part of the formula at a time. (x) is translated as 

‘For some x’, ‘there exists an x’, ‘there is at least one x’. The second part of (1) says ‘x is H’ or ‘x 

is happy’. Putting thse two parts together we get a bridge translation. Again, a bridge translation 

is not quite English and not quite predicate logic. Here is a bridge translation of (1) 

 

 (1B) For some x, x is happy. 

 

(1) says that there is at least one in the object in the D that has the property of being happy. 

Using the bridge translation (1B), we can more easily translate (1) into colloquial English:  

 

(1E) Someone is happy.  

 

Consider (2). Again, we can use a bridge translation,  

 

(2B) For some x, x is not a zombie. 

 

(2B) can be translated into colloquial English as follows: 

 

(2E) Someone is not a zombie. 

 

In the case of (3), note that negation has wide scope. Thus, we can translate ‘(x)Zx’ first, and 

then translate ‘(x)Zx’. That is, (x)Zx translates into ‘Someone is a zombie’, and (x)Zx 

translates as: 

 

(3E) It is not the case that someone is a zombie. 

 

Notice that (2) and (3) say something distinct. (2) says that something exists that is not a zombie, 

while all (3) says is that zombies do not exist. Let’s consider (4) and (5) together. The bridge 

translations for (4) and (5) are as follows: 

 

(4B) For some x, x is a zombie and x is happy. 

(5B) For some x, x is a zombie, and for some x, x is happy. 

 

Notice that these two propositions do not say the same thing. (4) asserts that there is something 

that is both a zombie and happy, while (5) asserts that there is a zombie and there is someone 

who is happy.  

 Finally, consider some propositions where  is not the main operator.  

 

(6) (x)(Zx  Hx) 

(7) (x)(Zx  Hx) 

(8) (x)(Zx  Hx) 

 

The bridge translations for these are  

 

(6B) For some x, if x is a zombie, then x is happy. 
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(7B) For some x, x is a zombie or x is happy. 

(8B) For some x, x is a zombie if and only if x is happy. 

 

and these can be translated into the following English expressions 

 

(6E) There exists something such that if it is a zombie, then it is happy. 

(7E) Someone is either a zombie or happy. 

(8E) Something is a zombie if and only if it is happy. 

 

Notice that (6E) is a bit strange. We might exploit the fact that ZxHx is equivalent to ZxHx 

and translate (6+) instead: 

 

(6) (x)(ZxHx) 

(6E+) Something is either happy or not zombie. 

 

Classroom Exercises: Basic Translation in RL 

 

Key:  D: people 

Px: x is poor 

Lx: x is lazy 

Rx: x is rich 

 

Universal Quantifier 

1. (x)Px 

2. (x)(PxLx) 

3. (x)Px(x)Lx, what is the difference between #3 and #2? 

4. (x)(PxLx) 

5. (x)(PxLx) 

6. (x)(PxLx) 

 

Existential Quantifier 

1. (x)Px 

2. (x)Px(x)Rx 

3. (x)(PxRx), what is the difference between #3 and #2? 

4. (x)(PxRx) 

5. (x)(PxRx) 

6. (x)(PxRx) 

 

English to RL 

1. All poor people are lazy. 

2. All lazy people are poor. 

3. Not all lazy people are poor. 

4. Some lazy person is not poor. 

5. Someone is lazy and someone is poor. 

6.* If not all lazy people are poor, then not all poor people are lazy. 
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Semantics: A Longer Discussion (Optional) 

 

In the RL, the basic unit of expression, the proposition, was capable of being true or false. This 

meant that the semantics of RL just involved assigning truth values to the well-formed formulas 

of this language. This cannot be the case for RL since the basic units of expressions do not 

expression propositions (something capable of being true or false) but are constituents (parts) of 

propositions. The semantics of RL has three key elements: 

 

(1) A model, which consists of 

(2) an interpretation, and  

(3) a domain 

 

Model A model in RL is a structure consisting of a domain D and an 

interpretation function I. 

 

Interpretation An interpretation is an assignment of (i) objects in D to names, (ii) a set 

of n-tuples in D to n-place predicates, and (iii) truth values to sentences. 

 

Domain The domain of discourse (abbreviated as ‘D’) consists of all of the 

things that a language can meaningfully refer to or talk about. 

 

 

We give meaning to the names, n-place predicates, and wffs in RL by (i) assigning objects to 

names, (ii) assigning sets of objects (or sets of pairs, or sets of triples) to n-place predicates, and 

(iii) assigning truth values to closed formula. 

 What was somewhat glossed over (above) were interpretations of n-place predicates 

where n>1. Consider the following two-place predicate: 

 

Lxy: x loves y 

 

Here the interpretation does not simply tell us about a collection of single objects, i.e. about 

which objects which love or are loved. Instead, an interpretation of this two-place ‘Lxy’ tells us 

something about pairs of objects, i.e. about which objects love which objects. It tells us who 

loves whom. Thus, rather than saying an interpretation of an n-place predicate tells us something 

about a collection of objects, we say that it tells us something about a set (or collection) of n-

tuples, where an n-tuple is a sequence of n-objects. In the above case, an interpretation of ‘Lxy’ 

is an assignment of a set of 2-tuples to ‘Lxy.’ 

 For convenience, we will write tuples by listing the elements (objects) within angle 

brackets ‘ ’ and separate each element by commas. For example,  

 

Liz, Jon  

 

denotes a 2-tuple, while  

 

Liz, Vic, Jon 
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denotes a 3-tuple.  

Thus, suppose that in D, Jon loves Liz (and no one else), Liz loves Vic (and no one else), 

and Vic loves no one. The interpretation of ‘Lxy’ in D would be represented by the following set 

of 2-tuples:  

 

I (Lxy): {Jon, Liz, Liz, Vic} 

 

This says that the interpretation of the predicate ‘x loves y’ relative to D consists of a set with 

two 2-tuples, one 2-tuple is Bill, Corinne and the other is Corinne, Alfred.  

Third, an interpretation assigns truth values to closed formula.  

 
1 v(Rai)=T if and only if (iff) the interpretation of ai is in R, i.e. ai  R. 

2 v(P)=T iff v(P)=F 

 v(P)=F iff v(P)=T 

3 v(P  Q)=T iff v(P)=T, and v(Q)=T 

 v(PQ)=F iff v(P)=F or v(Q)=F 

4 v(P  Q)=T iff either v(P)=T or v(Q)=T 

 v(PQ)=F iff v(P)=F and v(Q)=F 

5 v(P Q)=T iff either v(P)=F or v(Q)=T 

 v(PQ)=F iff v(P)=T and v(Q)=F 

6 v(PQ)=T iff either v(P)=T and v(Q)=T, or v(P)=F and v(Q)=F 

 v(PQ)=F iff either v(P)=T and v(Q)=F, or v(P)=F and v(Q)=T 

7 v(x)P=T iff for every name a not in P and every a-variant interpretation, P(a/x)=T. 

 v(x)P=F iff for at least one a not in P and at least one a-variant interpretation, P(a/x)=F. 

8 v(x)P=T iff for at least one name a not in P and at least one a-variant interpretation, P(a/x)=T. 

 v(x)P=F iff for every name a not in P and every a-variant interpretation, P(a/x)=F. 

 

Much of the above is straightforward and similar to the semantics of PL. However, what is 

unique to RL concerns (1), (7), and (8).  

 The valuation of wffs with involving predicate terms and names is straightforward. A 

formula Rai is true if and only if ai is in the set of objects (or set of n-tuples) designated by R. 

For example, ‘Jon is tall’ is true if and only if Jon is in the set of tall objects. Likewise, ‘Liz loves 

Jon’ is true if and only if the 2-tuple Liz, Jon is in the interpretation of the ‘Lxy’.  

 The valuations for (7) and (8) are done by defining truth values of quantified formulas by 

relying upon the truth values of simpler, non-quantified formula. This method requires a little 

care for, at least initially, we might say that ‘(x)Px’ is true if and only if ‘Px’ is true given some 

replacement of ‘x’ with an object or a name (object constant) is true. Likewise, a wff like 

‘(x)Px’ is true if and only if ‘Px’ is true given that every replacement of ‘x’ with an object or 

name yield a true propositoin. However, this will not work without some further elaboration. On 

the one hand, we cannot replace variables with objects from the domain since variables are 

linguistic items and replacing a variable with an object won’t be a wff. It won’t even be a 

proposition. On the other hand, we cannot replace variables with names from our logical 

vocabulary because this falsely assumes that we have a name for every object in the domain. It 

might be the case that some objects in the domain are unnamed.  

 The solution to this problem is not simply expanding our logical vocabulary so that there 

is a name for every object but to consider the multitude of different ways in which a single name 

can be interpreted relative to the domain. The general idea is that ‘(x)P’ is true if and only if  
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‘P(a/x)’ is true for every way of interpreting ‘a’ and ‘(x)P’ is true if and only if ‘P(a/x)’ is true 

for every way of interpreting ‘a’. To put this more precisely, consider that there are many 

different ways that an object in the domain can be assigned to a name. To see this more clearly, 

consider the following domain: 

 

D: {Jon, Vic, Liz} 

 

Now let’s consider the following interpretation I of ‘a’ relative to D: 

 

I (a): Jon 

 

This is a perfectly legitimate interpretation, but we might think of a variant interpretation of I, 

e.g.  

 

I 1(a): Vic 

 

Further, we might even think of another variant interpretation of I, e.g. 

 

I 2(a): Liz 

 

Let’s say that for any name ‘a’, an interpretation Ia is ‘a-variant’, ‘a-varies’, or is an ‘a-variant 

interpretation’ if and only if Ia interprets ‘a’ (i.e. it assigns it an object in D) and it either does 

not differ from I or it differs only in the interpretation it assigns to ‘a’ (i.e. it doesn’t differ on 

the interpretation of any other feature of RL). Thus, I, I 1, and I 2 are all a-variant interpretations 

of I since they all assign ‘a’ to an object in the domain and they either do not differ from I or 

differ only in the interpretation they assign to ‘a’. We might then replace our intuitive definition 

of when ‘‘(x)P’ is true from  

 

‘(x)P’ is true if and only if ‘P(a/x)’ is true for every way of interpreting ‘a’ 

 

to 

 

‘(x)P’ is true iff for every a-variant interpretation, it is the case that the P(a/x) is true.  

 

However, we need to make one further caveat. We said that for any name ‘a’, an interpretation 

Ia is ‘a-variant’, ‘a-varies’, or is an ‘a-variant interpretation’ if and only if Ia interprets ‘a’ 

(i.e. it assigns it an object in D) and it either does not differ from I or it differs only in the 

interpretation it assigns to ‘a’. Part of the idea here is that we want to hold constant our 

interpretation of all other formula (e.g. n-place predicate terms or other names) and consider the 

various ways of interpreting ‘a’ relative to the domain. For this to occur, the substituted name ‘a’ 

should not already occur in P since this name presumably already has an interpretation. In other 

words, determining the truth value of ‘(x)Pxa’ requires us to hold our interpretation of ‘P’ and 

‘a’ fixed, and to cash out the truth value of quantified part of the formula by considering the 

various ways (the variant interpretations) a substituted name (other than ‘a’) could be interpreted 

in the domain.  
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 Thus, we need to replace our revised definition of when ‘(x)P’ is true from 

 

‘(x)P’ is true iff for every a-variant interpretation, it is the case that the P(a/x) is true.  

 

to  

 

v(x)P=T iff for every name a not in P and every a-variant interpretation, P(a/x)=T.  

 

Using the notion of a variable interpretation, we have a solution to the problem of defining 

quantified formula by replacing variables with names from our logical vocabulary since our 

solution does not falsely assume that we have a name for every object in the domain. Instead, it 

assumes that there are many ways in which a name can be interpreted, and so while there may 

not always be a name for every object in the domain, there is always at least one variant 

interpretation that assigns a name to the previously unnamed object. Using this notion, a 

universally quantified proposition (x)P is true iff for every name a not in P and every a-variant 

interpretation, it is the case that the P(a/x) is true. In other words, it is true for every formula that 

is the result of replacing ‘x’ with ‘a’, e.g. (x)Px is true if and only if Pa, Pb, Pc, and so on are 

true. Likewise, an existentially quantified proposition (x)P is true iff for at least one name a not 

in P and at least one a-variant interpretation, it is the case that the P(a/x) is true (the formula that 

is the result of replacing ‘x’ with ‘a’).   
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