Directions: This exam has 30 questions, for a total of 100 points and 0 bonus points. Please read the directions for each section carefully. If you have any questions about the exam itself, please raise your hand and I will come to your desk to answer your question. You may use the last pages of this exam as scrap paper.

1 Multiple Choice

Choose the best answer.

- 1. (2 points) An interpretation of **RL** is a function that does what (indicate all that apply):
 - A. specifies what objects are in the domain.
 - B. assigns truth values to n-place predicate terms followed by n terms.
 - C. for each name in \mathbf{RL} it assigns that name one and only one item in \mathcal{D}
 - D. for each *n*-place predicate term in **RL**assigns, it assigns that predicate term a set of *n*-tuples composed of elements from \mathcal{D}
 - E. assigns truth values to objects and wffs
- 2. (2 points) What is the principal weakness of **PL** in comparison to **RL**
 - A. **PL** is not expressive enough: there are valid English arguments that can be expressed in **RL** that cannot be expressed in **PL**
 - B. **PL** is too expressive: there are valid arguments in **PL** for which it would be impossible to express in English.
 - C. PL has an imprecise syntax, while the syntax of RL is fully precise.
 - D. **PL** has an imprecise semantics, while the semantics of **RL** is fully precise.
- 3. (2 points) What is a model (\mathcal{D}) ?
 - A. a model (\mathcal{M}) is a two-part structure consisting of a domain (\mathcal{D}) and an interpretation function (\mathscr{I})
 - B. a model (\mathcal{M}) is a three-part structure consisting of a domain (\mathcal{D}) , an interpretation function (\mathscr{I}) , and a valuation (v) function.
 - C. a model (\mathcal{M}) is a two-part structure consisting of a domain (\mathcal{D}) and a valuation function v where the valuation function assigns truth values to RL-wffs.
 - D. a model (\mathcal{M}) is a single-part structure consisting of a domain (\mathcal{D})
- 4. (2 points) In a predicate logic tree, under what conditions is a branch that contains a universally quantified wff (e.g. $(\forall x)Px$) considered a *completed open branch* (indicate all that apply)
 - A. when $(\forall x)Px$ has been decomposed into $\neg(\exists x)Px$
 - B. when $\Diamond P$ has been decomposed and relativized to a possible world, e.g., irj
 - C. when $(\forall x) Px$ has been decomposed for every name a, b, c, \ldots that occurs in that branch
 - D. when all the complex wffs (non-literals) that are in that branch and that can be decomposed have been decomposed
 - E. when the branch is not closed, viz., does not contain a wff and its literal negation
- 5. (2 points) What is a deductive apparatus for **RL**?
 - A. a set of rules of derivation that express which wffs ϕ can be written after which wffs ψ in a derivation.
 - B. a set of rules that state how a tree is supposed to look, e.g. horizontally rather than vertically.

- C. It is a set of rules that allow individuals to reason from facts (experience) to general laws, e.g. laws of nature.
- D. a set of rules that state that the rows in a proof need to be numbered.
- E. a way of listing off each wff one right after another
- 6. (2 points) What is a derivation of \mathbf{Q} using \mathbf{RD} ?
 - A. a finite string of formulas from a set Γ of **RL** wffs where (i) the last formula in the string is Q and (ii) each formula is either a premise, an assumption, or is the result of the preceding formulas and the deductive apparatus.
 - B. finite string of wffs starting with some premises A, B, C, \ldots and ending with Q.
 - C. a finite string of wffs starting with some premises $\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots$ or assumptions and ending with \mathbf{Q} .
 - D. an infinite string of wffs starting with some premises A, B, C, \ldots or assumptions and ending with Q.

1.1 Symbols

- 7. (2 points) Which of the following symbols are **RL** names (indicate all that apply)?
 - A. b
 - B. y
 - C. \exists
 - D. m
 - E. n
 - F. \forall
 - G. \diamond

1.2 Syntax

State whether the following formulas are wffs. You can assume that H is a one-place predicate, that L is a two-place predicate, and conventions for simplifying wffs are present.

- 8. (2 points) Hab
- 9. (2 points) $Ha \vee \neg Hb$
- 10. (2 points) $(\forall x)Hx$
- 11. (2 points) $(\exists y)(\forall x)(Lxy \land \neg Hx)$

1.3 Semantics

Directions: Determine whether the following wffs are true or false by using the following model: $\mathcal{D} = \{1, 2, 3, 4, 5\}, \ \mathscr{I}(a) = 1, \ \mathscr{I}(b) = 2, \ \mathscr{I}(c) = 3, \ \mathscr{I}(d) = 4, \ \mathscr{I}(e) = 5, \text{ for all other names } \alpha, \ \mathscr{I}(\alpha) = 4, \ \mathscr{I}(N) = \{1, 2, 3, 4, 5\}, \ \mathscr{I}(G) = \{\langle 2, 1 \rangle, \langle 3, 2 \rangle, \langle 3, 1 \rangle, \langle 5, 1 \rangle\}, \ \mathscr{I}(I) = \{\}, \ \mathscr{I}(E) = \{2, 4\}, \ \mathscr{I}(O) = \{1, 3, 5\}$

- 12. (2 points) Oc
- 13. (2 points) $(\forall x)Nx$

- 14. (2 points) $(\exists y)Iy$
- 15. (2 points) $(\forall x)(Ex \land Ox)$
- 16. (2 points) Gab
- 17. (2 points) $(\exists x)(Gex)$

1.4 Translation

Directions: Translate the following English sentences into the language of predicate logic. Write the formula on the line provided. Use the following translation key as your guide: \mathcal{D} =people, $\mathscr{I}(a) =$ Ava, $\mathscr{I}(j) =$ Jon, $\mathscr{I}(e) =$ Eve, $\mathscr{I}(Lxy) = x$ loves y, $\mathscr{I}(Hx) = x$ is happy. $\mathscr{I}(Rx) = x$ is rich.

- 18. (2 points) Ava is not happy
- 19. (2 points) Ava loves Jon.
- 20. (2 points) Someone is *both* rich and happy.
- 21. (2 points) Someone is rich and someone is happy.
- 22. (2 points) All happy people are rich.

Directions: Translate the following predicate logic wffs into English. Write your translation on the line provided. Use the following translation key as your guide: $\mathcal{D}=$ people, $\mathscr{I}(a) =$ Ava, $\mathscr{I}(j) =$ Jon, $\mathscr{I}(e) =$ Eve, $\mathscr{I}(Lxy) = x$ loves y, $\mathscr{I}(Hx) = x$ is happy. $\mathscr{I}(Rx) = x$ is rich.

- 23. (2 points) $(\forall x)Lxx$
- 24. (2 points) $(\forall x)Lxa$
- 25. (2 points) $(\forall x)(Hx \to Lxx)$

2 Trees and Proofs

Directions: Use a truth-tree to determine whether the following sets of wffs are consistent/inconsistent or arguments are valid/invalid. If the tree shows the set to be consistent or the argument to be invalid, construct a model illustrating this fact. (Rubric: Tree=5pts, Property=1pt, Model=4pts, if applicable)

- 26. (10 points) Determine consistent/inconsistent: $Pa, Qb, (\exists x) \neg Px, (\forall x)Qx$
- 27. (10 points) Determine semantic entailment: $(\exists x)Px, (\exists x)Mx \vdash (\forall x)(Px \rightarrow Mx)$

Directions: Solve the following proofs.

- 28. (10 points) $(\forall x)Bx \vdash (\exists x)Bx$
- 29. (10 points) $Lab, (\forall x)Bxx \vdash (\forall y)Byy$
- 30. (10 points) $Pa, (\exists x)(Ax \land Bx) \vdash (\exists x)Ax$

$P \wedge Q$		P	$^{\prime} \lor Q$		
$P \wedge D$		P	~~(5	$\lor D$
Q $\wedge D$					
$\neg(P \lor Q)$		$\neg (P$	$\land Q)$		
$\neg(P) \qquad \neg \lor D$		$\neg(P)$		$\neg(Q)$	$\neg \wedge D$
$\neg(Q) \qquad \neg \lor D$					
$\neg(P \to Q)$		(1	$P \to Q$		
$P \qquad \neg \to D$		$\neg(P)$		rightarrow Q	$\rightarrow D$
$\neg(Q) \qquad \neg \to D$					
$P \leftrightarrow Q$			$\neg \neg (P)$		
$P \longrightarrow \neg(P) \leftrightarrow$	$\rightarrow D$		P	$\neg \neg D$	
$Q \qquad \neg(Q) \leftarrow$	$\rightarrow D$				
$\neg (P \leftrightarrow Q)$					
$P \sim \neg(P)$	$\neg\leftrightarrow D$				
$\neg(Q)$ Q	$\neg\leftrightarrow D$				
$\neg(\exists x)\phi\checkmark$			$\neg(\forall x)\phi\checkmark$		
$(\forall x) \neg (\phi), \neg \exists D$		()	$\exists x) \neg (\phi), \neg \forall x$	D	
$(\exists x)\phi\checkmark$			$(\forall x)\phi$		
$\phi(lpha/x), \exists D$			$\phi(\alpha/x), \forall D$		

Table 1: Truth tree decomposition rules for \mathbf{PL} and \mathbf{RL}

Derivation Rule – **Conjunction Introduction** $\land I$ $P, Q \vdash P \land Q$ or $P, Q \vdash Q \land P$

Derivation Rule – Conjunction Elimination ($\wedge E$) $P \wedge Q \vdash P$ or $P \wedge Q \vdash Q$

Derivation Rule – Conditional Introduction $(\rightarrow I)$

$$\begin{array}{c|cccc} n & & & P & A \\ \vdots & & & \vdots \\ (n+1) & & Q \\ (n+2) & P \rightarrow Q & \rightarrow I, n-(n+1) \end{array}$$

Derivation Rule – Conditional Elimination ($\rightarrow E$) $P \rightarrow Q, P \vdash Q$

Derivation Rule – **Reiteration (R)** $P \vdash P$ Derivation Rule – Negation Introduction $(\neg I)$

$$\begin{array}{c|cccc} n & & & P & & \mathbf{A} \\ \vdots & & & \vdots \\ (n+1) & & & Q \\ (n+2) & & \neg Q \\ (n+3) & \neg (P) & & \neg I, n-(n+2) \end{array}$$

Derivation Rule – Negation Elimination $(\neg E)$

$$\begin{array}{c|cccc} n & & \neg(P) & \mathbf{A} \\ \vdots & & \vdots \\ (n+1) & & Q \\ (n+2) & & \neg Q \\ (n+3) & P & \neg E, \, n-(n+2) \end{array}$$

Derivation Rule – **Disjunction Introduction** ($\lor I$) $P \vdash P \lor Q$ or $P \vdash Q \lor P$

Derivation Rule – Disjunction Elimination ($\forall E$)

1	$P \lor Q$	Р
n	P	А
:	:	
•	•	
(n+1)	R	
(i)	Q	А
:	:	
(i + 1)	D	
(l+1)		V(E = 1 - m - (m + 1) - (i) - (i + 1)
(κ)	п	$\vee L$, 1, $n - (n + 1)$, $(i) - (i + 1)$

Derivation Rule – Biconditional Introduction ($\leftrightarrow I$)

n	P	А
÷	÷	
(n + 1)	Q	
(i)	Q	А
÷	÷	
(i + 1)	P	
(k)	$P \stackrel{{}_{\scriptstyle \leftarrow}}{\leftrightarrow} Q$	$\leftrightarrow I,n\text{-}(n+1),(i)\text{-}(i+1)$

Derivation Rule – **Biconditional Elimination** ($\leftrightarrow E$) $P \leftrightarrow Q, P \vdash Q$ or $P \leftrightarrow Q, Q \vdash P$

Derivation Rule – **Disjunctive Syllogism (DS)** $P \lor Q, \neg Q \vdash P \text{ or } P \lor Q, \neg P \vdash Q$

Derivation Rule – Modus Tollens (MT) $P \rightarrow Q, \neg Q \vdash \neg P$

Derivation Rule – Hypothetical Syllogism (HS) $P \rightarrow Q, Q \rightarrow R \vdash P \rightarrow R$

Derivation Rule – **Double Negation (DN)** $P \dashv \neg \neg P$

Derivation Rule – De Morgan's Laws (DeM)

 $\neg (P \lor Q) \dashv \vdash \neg P \land \neg Q$ $\neg (P \land Q) \dashv \vdash \neg P \lor \neg Q$

Derivation Rule – **Implication (IMP)** $P \rightarrow Q \twoheadrightarrow \neg P \lor Q$

Derivation Rule – Universal Elimination ($\forall E$)

 $(\forall x)\phi(x_1\ldots x_n)\vdash \phi(\alpha_1\ldots \alpha_n/x_1\ldots x_n)$ where x is not in $\phi(\alpha_1\ldots \alpha_n)$

Derivation Rule – Existential Introduction $(\exists I)$

 $\phi(\alpha_i) \vdash (\exists x)\phi(x_n/\alpha_n)$ where x is not in $\phi(\alpha_i)$

Derivation Rule – Universal Introduction $(\forall I)$

 $\phi(\alpha_1 \dots \alpha_n) \vdash (\forall x) \phi(x_1 \dots x_n / \alpha_1, \dots \alpha_n)$ where the name α does not occur as premise, as an assumption in an open subproof, or in $(\forall x) \phi(x_1 \dots x_n / \alpha_1, \dots \alpha_n)$ and where x is not in $\phi(\alpha_1 \dots \alpha_n)$

Derivation Rule – **Existential Elimination** $(\exists E)$

1	$(\exists x)\mathbf{P}$	Р
n	$\mathbf{P}(a/x)$	А
÷	:	
(n + 1)	Q	
(k)	$\mathbf{Q}^{'}$	$\exists E, 1, n - (n+1)$

```
Derivation Rule – Quantifier Negation (QN)
```

 $\neg(\forall x)P \dashv\vdash (\exists x)\neg P \text{ or } \neg(\exists x)P \dashv\vdash (\forall x)\neg P$