Directions: This exam has 30 questions, for a total of 100 points and 0 bonus points. Please read the directions for each section carefully. If you have any questions about the exam itself, please raise your hand and I will come to your desk to answer your question. You may use the last pages of this exam as scrap paper.

## 1 Multiple Choice

## Choose the best answer.

1. (2 points) An interpretation of $\mathbf{R L}$ is a function that does what (indicate all that apply):
A. specifies what objects are in the domain.
B. assigns truth values to n-place predicate terms followed by $n$ terms.
C. for each name in $\mathbf{R L}$ it assigns that name one and only one item in $\mathcal{D}$
D. for each $n$-place predicate term in RLassigns, it assigns that predicate term a set of $n$-tuples composed of elements from $\mathcal{D}$
E. assigns truth values to objects and wffs
2. (2 points) What is the principal weakness of $\mathbf{P L}$ in comparison to $\mathbf{R L}$
A. $\mathbf{P L}$ is not expressive enough: there are valid English arguments that can be expressed in RL that cannot be expressed in PL
B. $\mathbf{P L}$ is too expressive: there are valid arguments in $\mathbf{P L}$ for which it would be impossible to express in English.
C. PL has an imprecise syntax, while the syntax of $\mathbf{R L}$ is fully precise.
D. PL has an imprecise semantics, while the semantics of $\mathbf{R L}$ is fully precise.
3. (2 points) What is a model $(\mathcal{D})$ ?
A. a model $(\mathcal{M})$ is a two-part structure consisting of a domain $(\mathcal{D})$ and an interpretation function $(\mathscr{I})$
B. a model $(\mathcal{M})$ is a three-part structure consisting of a domain $(\mathcal{D})$, an interpretation function $(\mathscr{I})$, and a valuation $(v)$ function.
C. a model $(\mathcal{M})$ is a two-part structure consisting of a domain $(\mathcal{D})$ and a valuation function $v$ where the valuation function assigns truth values to RL-wffs.
D. a model $(\mathcal{M})$ is a single-part structure consisting of a domain $(\mathcal{D})$
4. (2 points) In a predicate logic tree, under what conditions is a branch that contains a universally quantified wff (e.g. $(\forall x) P x)$ considered a completed open branch (indicate all that apply)
A. when $(\forall x) P x$ has been decomposed into $\neg(\exists x) P x$
B. when $\forall P$ has been decomposed and relativized to a possible world, e.g., irj
C. when $(\forall x) P x$ has been decomposed for every name $a, b, c, \ldots$ that occurs in that branch
D. when all the complex wffs (non-literals) that are in that branch and that can be decomposed have been decomposed
E. when the branch is not closed, viz., does not contain a wff and its literal negation
5. (2 points) What is a deductive apparatus for $\mathbf{R L}$ ?
A. a set of rules of derivation that express which wffs $\phi$ can be written after which wffs $\psi$ in a derivation.
B. a set of rules that state how a tree is supposed to look, e.g. horizontally rather than vertically.
C. It is a set of rules that allow individuals to reason from facts (experience) to general laws, e.g. laws of nature.
D. a set of rules that state that the rows in a proof need to be numbered.
E. a way of listing off each wff one right after another
6. (2 points) What is a derivation of $\mathbf{Q}$ using $\mathbf{R D}$ ?
A. a finite string of formulas from a set $\Gamma$ of $\mathbf{R L}$ wffs where (i) the last formula in the string is $Q$ and (ii) each formula is either a premise, an assumption, or is the result of the preceding formulas and the deductive apparatus.
B. finite string of wffs starting with some premises $\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots$ and ending with $\mathbf{Q}$.
C. a finite string of wffs starting with some premises $\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots$ or assumptions and ending with Q.
D. an infinite string of wffs starting with some premises $\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots$ or assumptions and ending with $\mathbf{Q}$.

### 1.1 Symbols

7. (2 points) Which of the following symbols are $\mathbf{R L}$ names (indicate all that apply)?
A. $b$
B. $y$
C. $\exists$
D. $m$
E. $n$
F. $\forall$
G. $\diamond$

### 1.2 Syntax

State whether the following formulas are wffs. You can assume that $H$ is a one-place predicate, that $L$ is a two-place predicate, and conventions for simplifying wffs are present.
8. (2 points) Hab
9. (2 points) $H a \vee \neg H b$
10. (2 points) $(\forall x) H x$
11. (2 points) $(\exists y)(\forall x)(L x y \wedge \neg H x)$

### 1.3 Semantics

Directions: Determine whether the following wffs are true or false by using the following model: $\mathcal{D}=\{1,2,3,4,5\}, \mathscr{I}(a)=1, \mathscr{I}(b)=2, \mathscr{I}(c)=3, \mathscr{I}(d)=4, \mathscr{I}(e)=5$, for all other names $\alpha$, $\mathscr{I}(\alpha)=4, \mathscr{I}(N)=\{1,2,3,4,5\}, \mathscr{I}(G)=\{\langle 2,1\rangle,\langle 3,2\rangle,\langle 3,1\rangle,\langle 5,1\rangle\}, \mathscr{I}(I)=\{ \}, \mathscr{I}(E)=\{2,4\}$, $\mathscr{I}(O)=\{1,3,5\}$
12. (2 points) $O c$
13. (2 points) $(\forall x) N x$
14. (2 points) $(\exists y) I y$
15. (2 points) $(\forall x)(E x \wedge O x)$
16. (2 points) Gab
17. (2 points) $(\exists x)(G e x)$

### 1.4 Translation

Directions: Translate the following English sentences into the language of predicate logic. Write the formula on the line provided. Use the following translation key as your guide: $\mathcal{D}=$ people, $\mathscr{I}(a)=$ Ava, $\mathscr{I}(j)=$ Jon, $\mathscr{I}(e)=$ Eve, $\mathscr{I}(L x y)=x$ loves $y, \mathscr{I}(H x)=x$ is happy. $\mathscr{I}(R x)=x$ is rich.
18. (2 points) Ava is not happy
19. (2 points) Ava loves Jon.
20. (2 points) Someone is both rich and happy.
21. (2 points) Someone is rich and someone is happy.
22. (2 points) All happy people are rich.

Directions: Translate the following predicate logic wffs into English. Write your translation on the line provided. Use the following translation key as your guide: $\mathcal{D}=$ people, $\mathscr{I}(a)=$ Ava, $\mathscr{I}(j)=$ Jon, $\mathscr{I}(e)=$ Eve, $\mathscr{I}(L x y)=x$ loves $y, \mathscr{I}(H x)=x$ is happy. $\mathscr{I}(R x)=x$ is rich.
23. (2 points) $(\forall x) L x x$
24. (2 points) $(\forall x) L x a$
25. (2 points) $(\forall x)(H x \rightarrow L x x)$

## 2 Trees and Proofs

Directions: Use a truth-tree to determine whether the following sets of wffs are consistent/inconsistent or arguments are valid/invalid. If the tree shows the set to be consistent or the argument to be invalid, construct a model illustrating this fact. (Rubric: Tree=5pts, Property=1pt, Model=4pts, if applicable)
26. (10 points) Determine consistent/inconsistent: $P a, Q b,(\exists x) \neg P x,(\forall x) Q x$
27. (10 points) Determine semantic entailment: $(\exists x) P x,(\exists x) M x \vdash(\forall x)(P x \rightarrow M x)$

Directions: Solve the following proofs.
28. (10 points) $(\forall x) B x \vdash(\exists x) B x$
29. (10 points) Lab, $(\forall x) B x x \vdash(\forall y) B y y$
30. (10 points) $P a,(\exists x)(A x \wedge B x) \vdash(\exists x) A x$

| $\begin{array}{cl} P \wedge Q & \\ P & \wedge D \\ Q & \wedge D \end{array}$ |  |
| :---: | :---: |
| $\begin{array}{ll} \hline \neg(P \vee Q) & \\ \neg(P) & \\ \neg \vee D \\ \neg(Q) & \\ \neg \vee D \end{array}$ | $\neg(P) \longleftarrow \neg(P \wedge Q) \longrightarrow_{\neg(Q)} \quad \neg \wedge D$ |
| $\begin{array}{cl} \neg(P \rightarrow Q) & \\ P & \neg \rightarrow D \\ \neg(Q) & \neg \rightarrow D \end{array}$ | $\neg(P) \longleftarrow(P \rightarrow Q) \sim_{Q} \rightarrow D$ |
|  | $\begin{array}{ll} \neg \neg(P) \\ P & \neg \neg D \end{array}$ |
| $\begin{array}{cl} P & \neg(P \leftrightarrow Q) \\ \neg(P) & \neg \leftrightarrow D \\ \neg(Q) & Q \end{array}$ |  |
| $\begin{gathered} \neg(\exists x) \phi \checkmark \\ (\forall x) \neg(\phi), \neg \exists D \end{gathered}$ | $\begin{gathered} \neg(\forall x) \phi \checkmark \\ (\exists x) \neg(\phi), \neg \forall D \end{gathered}$ |
| $\begin{gathered} (\exists x) \phi \checkmark \\ \phi(\alpha / x), \exists D \end{gathered}$ | $\begin{gathered} (\forall x) \phi \\ \phi(\alpha / x), \forall D \end{gathered}$ |

Table 1: Truth tree decomposition rules for $\mathbf{P L}$ and $\mathbf{R L}$

Derivation Rule - Conjunction Introduction $\wedge I$
$P, Q \vdash P \wedge Q$ or $P, Q \vdash Q \wedge P$

Derivation Rule - Conjunction Elimination ( $\wedge E$ )
$P \wedge Q \vdash P$ or $P \wedge Q \vdash Q$

## Derivation Rule - Conditional Introduction ( $\rightarrow I$ )

| $n$ | $P$ | A |
| :--- | :--- | :--- |
|  |  | $\vdots$ |
|  |  |  |
| $(n+1)$ |  |  |
| $(n+2)$ | $P \rightarrow Q$ | $\rightarrow I, n-(n+1)$ |

Derivation Rule - Conditional Elimination $(\rightarrow E)$
$P \rightarrow Q, P \vdash Q$

Derivation Rule - Reiteration (R)
$P \vdash P$

## Derivation Rule - Negation Introduction ( $\neg I)$

| $n$ | $P$ | A |
| :--- | :--- | :--- |
| $\vdots$ | $\vdots$ |  |
| $(n+1)$ | $Q$ |  |
| $(n+2)$ | $\neg Q$ |  |
| $(n+3)$ | $\neg(P)$ | $\neg I, n-(n+2)$ |

Derivation Rule - Negation Elimination $(\neg E)$

| $n$ | $\neg(P)$ | A |
| :--- | :--- | :--- |
|  | $\vdots$ |  |
| $(n+1)$ | $Q$ |  |
| $(n+2)$ | $\neg Q$ |  |
| $(n+3)$ | $P$ | $\neg E, n-(n+2)$ |

## Derivation Rule - Disjunction Introduction ( $\vee I$ )

$P \vdash P \vee Q$ or $P \vdash Q \vee P$

## Derivation Rule - Disjunction Elimination ( $\vee E$ )

```
\(1 \quad P \vee Q \quad \mathrm{P}\)
\(n \quad |\)\begin{tabular}{l|l}
\(n\) & A
\end{tabular}
\begin{tabular}{l|l}
\(\vdots\) & \(\vdots\) \\
\((n+1)\) & \(R\)
\end{tabular}
\begin{tabular}{l|ll} 
(i) & \(Q\) & A
\end{tabular}
\(\vdots\)
\((i+1)\)
(k) \(\quad R\)
    \(\vee E, 1, n-(n+1),(i)-(i+1)\)
```

Derivation Rule - Biconditional Introduction ( $\leftrightarrow I)$

| $n$ | $P$ | A |
| :--- | :--- | :--- |
| $\vdots$ | $\vdots$ |  |
| $(n+1)$ | $Q$ |  |
| $(i)$ | $Q$ | A |
| $\vdots$ | $\vdots$ |  |
| $(i+1)$ | $P$ |  |
| $(k)$ | $P \leftrightarrow Q$ | $\leftrightarrow I, n-(n+1),(i)-(i+1)$ |

Derivation Rule - Biconditional Elimination ( $\leftrightarrow E$ )
$P \leftrightarrow Q, P \vdash Q$ or $P \leftrightarrow Q, Q \vdash P$

Derivation Rule - Disjunctive Syllogism (DS)
$P \vee Q, \neg Q \vdash P$ or $P \vee Q, \neg P \vdash Q$

Derivation Rule - Modus Tollens (MT)
$P \rightarrow Q, \neg Q \vdash \neg P$

Derivation Rule - Hypothetical Syllogism (HS)
$P \rightarrow Q, Q \rightarrow R \vdash P \rightarrow R$

Derivation Rule - Double Negation (DN)
$P \dashv \vdash \neg P$

Derivation Rule - De Morgan's Laws (DeM)
$\neg(P \vee Q) \dashv \neg P \wedge \neg Q$
$\neg(P \wedge Q) \dashv \neg P \vee \neg Q$

Derivation Rule - Implication (IMP)
$P \rightarrow Q \dashv \neg P \vee Q$

## Derivation Rule - Universal Elimination ( $\forall E$ )

$(\forall x) \phi\left(x_{1} \ldots x_{n}\right) \vdash \phi\left(\alpha_{1} \ldots \alpha_{n} / x_{1} \ldots x_{n}\right)$ where $x$ is not in $\phi\left(\alpha_{1} \ldots \alpha_{n}\right)$

Derivation Rule - Existential Introduction ( $\exists I$ )
$\phi\left(\alpha_{i}\right) \vdash(\exists x) \phi\left(x_{n} / \alpha_{n}\right)$ where $x$ is not in $\phi\left(\alpha_{i}\right)$

Derivation Rule - Universal Introduction ( $\forall I$ )
$\phi\left(\alpha_{1} \ldots \alpha_{n}\right) \vdash(\forall x) \phi\left(x_{1} \ldots x_{n} / \alpha_{1}, \ldots \alpha_{n}\right)$ where the name $\alpha$ does not occur as premise, as an assumption in an open subproof, or in $(\forall x) \phi\left(x_{1} \ldots x_{n} / \alpha_{1}, \ldots \alpha_{n}\right)$ and where $x$ is not in $\phi\left(\alpha_{1} \ldots \alpha_{n}\right)$

## Derivation Rule - Existential Elimination ( $\exists E$ )

| 1 | $(\exists x) \mathbf{P}$ | $\mathbf{P}$ |
| :--- | :--- | :--- |
| $n$ |  | $\mathbf{P}(a / x)$ |
|  | $\vdots$ | A |
| $\vdots$ |  |  |
| $(n+1)$ | $\mathbf{Q}$ |  |
| $(k)$ | $\mathbf{Q}$ | $\exists E, 1, n-(n+1)$ |

Derivation Rule - Quantifier Negation ( $Q N$ )
$\neg(\forall x) P \neg \vdash(\exists x) \neg P$ or $\neg(\exists x) P \dashv \vdash(\forall x) \neg P$

