Name: _

Directions: This exam has 22 questions, for a total of 99 points and 0 bonus points. Please read the directions for each section carefully. If you have any questions about the exam itself, please raise your hand and I will come to your desk to answer your question. YOu may use the last pages of this exam as scrap paper.

Short Answer

Directions: Answer the questions on the line provided by writing the abbreviation for the derivation rule that is best described in the question prompt provided.

- 1. (3 points) What derivation rule is best described as follows: if on the assumption P both $\neg Q$ and Q follow, then $\neg(P)$ can be derived.
- 2. (3 points) What derivation rule is best described as follows: if on the assumption P, Q is derived within the subproof, then $P \to Q$ can be derived.
- 3. (3 points) What derivation rule is best described as follows: given $P \lor Q$, if P is assumed and it is shown that R follows from P and if Q is assumed and it is shown that R follows from Q, then R can be derived.
- 4. (3 points) What derivation rule is best described as follows: on the assumption P, it follows that Q. And, on the assumption that Q, it follows that P. Therefore, $P \leftrightarrow Q$.
- 5. (3 points) What derivation rule best describes the following reasoning: : if John goes to the store, then he will buy some candy. John went to the store. Therefore, John bought some candy.
- 6. (3 points) What derivation rule best describes the following reasoning: if John goes to the store, then he will buy candy. John did not buy candy. Therefore, John did not go to the store.
- 7. (3 points) Can the following derivation be justified by any single derivation rule in the deductive apparatus for *PL*: "If John passes the exam, he will graduate. John did not pass the exam. Therefore, John will not graduate." Answer: "yes" (and list the derivation rule) or "no" (no need to list the rule).

Multiple Choice

Directions: Answer the questions in the spaces provided by circling one and only one answer (unless the question states otherwise).

- 8. (2 points) What is a deductive apparatus for **PL**?
 - A. a set of derivation rules that expresses which wffs \mathbf{Q} can be written after which wffs \mathbf{P} in a proof.
 - B. a set of rules that state that the rows in a proof need to be numbered.
 - C. a set of rules that state how the proof is supposed to look, e.g. horizontally rather than vertically.
 - D. It is a set of rules that allow individuals to reason from facts (experience) to general laws, e.g. laws of nature.
- 9. (2 points) What is a derivation of **Q** using **PD**?
 - A. A derivation of \mathbf{Q} is a finite string of wffs starting with some premises $\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots$ and ending with \mathbf{Q} .

- B. A derivation of \mathbf{Q} is a finite string of formulas from a set Γ of \mathbf{PL} wffs where (i) the last formula in the string is \mathbf{Q} and (ii) each wff in the set is either a premise, an assumption, or is the result of the preceding wffs and the deductive apparatus.
- C. A derivation of \mathbf{Q} is a finite string of wffs starting with some premises $\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots$ or assumptions and ending with \mathbf{Q} .
- D. A derivation of \mathbf{Q} is an infinite string of wffs starting with some premises $\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots$ or assumptions and ending with \mathbf{Q} .
- 10. (2 points) What is the difference between $\Gamma \vdash \mathbf{Q}$ and $\Gamma \models \mathbf{Q}$?

A. $\Gamma \models \mathbf{Q}$ is syntactic consequence while $\Gamma \vdash \mathbf{Q}$ is semantic consequence.

- B. $\Gamma \vdash \mathbf{Q}$ is syntactic consequence while $\Gamma \models \mathbf{Q}$ is semantic consequence.
- 11. (2 points) What single derivation rule would allow you to reason to Q from $P \wedge Q$?
 - $\begin{array}{l} \mathbf{A.} \quad \forall E \\ \mathbf{B.} \quad \wedge E \end{array}$
 - C. $\rightarrow E$
 - D. $\leftrightarrow E$

12. (2 points) What single derivation rule would allow you to reason to $P \lor Q$ from Q?

- A. $\lor I$
- B. $\rightarrow E$
- C. $\leftrightarrow E$
- D. $\wedge E$

13. (2 points) What single derivation rule would allow you to reason to Q from $P, P \rightarrow Q$?

- A. $\rightarrow I$
- B. $\rightarrow E$
- $\mathbf{C.}\ \leftrightarrow E$
- D. $\wedge E$

14. (2 points) What single derivation rule would allow you to reason to $\neg P$ from $P \rightarrow Q, \neg Q$?

- A. HS
- B. MT
- C. DeM
- D. IMP

15. (2 points) What single derivation rule would allow you to reason to $\neg P \land \neg R$ from $\neg (P \lor R)$?

- A. HS
- B. DeM
- C. MT
- D. IMP

16. (2 points) What single derivation rule would allow you to reason to $\neg P \lor Q$ from $P \to Q$?

- A. HS
- B. MT
- C. DeM
- D. IMP

Essay

Directions: Solve the following proofs. 17. (10 points) $A, B, C, ((A \land B) \land C) \to M \vdash M$ 18. (10 points) $Z \to (M \to R), Z \land M \vdash R$ 19. (10 points) $P \to M, \neg M, (Q \land T) \lor P \vdash Q$ 20. (10 points) $\neg (Z \lor T), \neg Z \leftrightarrow \neg (Q \lor R) \vdash \neg Q$ 21. (10 points) $\vdash (M \lor T) \rightarrow (P \lor \neg P)$ 22. (10 points) $\vdash M \rightarrow (M \lor S)$ Derivation Rule – Conjunction Introduction $\wedge I$ $P, Q \vdash P \land Q$ $P, Q \vdash Q \land P$ DERIVATION RULE – CONJUNCTION ELIMINATION $(\wedge E)$ $P \land Q \vdash P \text{ or } P \land Q \vdash Q$ DERIVATION RULE – CONDITIONAL INTRODUCTION $(\rightarrow I)$ nА ÷ $\begin{array}{c|c} (n+1) & & \\ (n+2) & P \rightarrow Q & & \rightarrow I, \ n-(n+1) \end{array}$ DERIVATION RULE – CONDITIONAL ELIMINATION $(\rightarrow E)$ $P \to Q, P \vdash Q$ DERIVATION RULE - REITERATION (R) $P \vdash P$ DERIVATION RULE – NEGATION INTRODUCTION $(\neg I)$ PА n: ÷ Q(n + 1)(n+2) $\neg Q$ (n+3) $\neg(P)$ $\neg I, n-(n+2)$

Derivation Rule – Negation Elimination $(\neg E)$

Derivation Rule – Disjunction Introduction $(\lor I)$

 $P \vdash P \lor Q \text{ or } P \vdash Q \lor P$

Derivation Rule – Disjunction Elimination $(\lor E)$

Derivation Rule – Biconditional Introduction $(\leftrightarrow I)$

n	P	А
÷	:	
(n + 1)	Q	
(i)	Q	А
÷	:	
(i + 1)	P	
(k)	$P \leftrightarrow Q$	$\leftrightarrow I,n\text{-}(n+1),(i)\text{-}(i+1)$

Derivation Rule – Biconditional Elimination $(\leftrightarrow E)$

 $P \leftrightarrow Q, P \vdash Q \text{ or } P \leftrightarrow Q, Q \vdash P$

Derivation Rule – Disjunctive Syllogism (DS)

 $P \lor Q, \neg Q \vdash P \text{ or } P \lor Q, \neg P \vdash Q$

Derivation Rule – Modus Tollens (MT)

 $P \to Q, \neg Q \vdash \neg P$

Derivation Rule – Hypothetical Syllogism (HS)

 $P \to Q, Q \to R \vdash P \to R$

Derivation Rule – Double Negation (DN)

 $P \twoheadrightarrow \neg \neg P$

DERIVATION RULE - DE MORGAN'S LAWS (DEM)

 $\neg (P \lor Q) \dashv \neg P \land \neg Q$ $\neg (P \land Q) \dashv \neg P \lor \neg Q$

DERIVATION RULE – IMPLICATION (IMP)

 $P \to Q \dashv \vdash \neg P \lor Q$

Evaluation

Page:	1	2	3	Total
Points:	25	14	60	99
Bonus Points:	0	0	0	0
Score:				