Introduction to Symbolic Logic

RL: Beyond Predicate Logic

Predicate Logic Semantics with Variable Assignments

Predicate Logic Semantics with
 Variable Assignments

Predicate Logic using Names

Recall the following valuation rules for predicate logic (let $\alpha_{1}, \ldots, \alpha_{n}$ be any series of names (not necessarily distinct), P be any n-place predicate, and ϕ, ψ are wffs in RL): Definition (RL-valuation using names)

Predicate Logic using Names

Recall the following valuation rules for predicate logic (let $\alpha_{1}, \ldots, \alpha_{n}$ be any series of names (not necessarily distinct), P be any n-place predicate, and ϕ, ψ are wffs in RL):

Definition (RL-valuation using names)

1. if $P \alpha_{1} \ldots \alpha_{n}$ is a closed atomic wff in RL, then $v_{\mathcal{M}}\left(P \alpha_{1} \ldots \alpha_{n}\right)=T$ iff $\left\langle\mathscr{I}\left(\alpha_{1}\right), \ldots, \mathscr{I}\left(\alpha_{n}\right)\right\rangle \in \mathscr{I}(P)$, otherwise $v_{\mathcal{M}}\left(P \alpha_{1} \ldots \alpha_{n}\right)=F$
2. $v_{\mathcal{M}}(\neg(\phi))=T$ iff $v_{\mathcal{M}}(\phi)=F$
3. $v_{\mathcal{M}}(\phi \wedge \psi)=T$ iff $v_{\mathcal{M}}(\phi)=T$ and $v_{\mathcal{M}}(\psi)=T$
4. $v_{\mathcal{M}}(\phi \vee \psi)=T$ iff $v_{\mathcal{M}}(\phi)=T$ or $v_{\mathcal{M}}(\psi)=T$
5. $v_{\mathcal{M}}(\phi \rightarrow \psi)=T$ iff $v_{\mathcal{M}}(\phi)=F$ or $v_{\mathcal{M}}(\psi)=T$
6. $v_{\mathcal{M}}(\forall x) \phi=T$ iff $v_{\mathcal{M}} \phi(\alpha / x)$ for every name α in RL.
7. $v_{\mathcal{M}}(\exists x) \phi=T$ iff $v_{\mathcal{M}} \phi(\alpha / x)$ for at least one name α in RL.

Two Problems: Problem 1

This definition of the valuation function has at least two problems:
Problem 1: the valuation function is only defined for closed RL-wffs. It is undefined for open RL-wffs (wffs with free variables, e.g. Px). A more inclusive valuation function might be desirable for a few reasons:

- special wffs: Ixx where $/$ is the two-place identity predicate
- compositional concerns: shouldn't the truth value of $(\exists x) P x$ be determined by the existential quantifier and $P x$, rather than say a wff $P a V P b, \ldots P n$?
- tighter relation between syntax and semantics: in some systems open formulas are wffs, but they are not interpreted. A valuation function that covers open formulas would mean that all wffs are interpreted

Two Problems: Problem 1

This definition of the valuation function has at least two problems:
Problem 1: the valuation function is only defined for closed RL-wffs. It is undefined for open RL-wffs (wffs with free variables, e.g. Px). A more inclusive valuation function might be desirable for a few reasons:

- special wffs: Ixx where I is the two-place identity predicate
- compositional concerns: shouldn't the truth value of $(\exists x) P x$ be determined by the existential quantifier and $P x$, rather than say a wff $P a \vee P b, \ldots P n$?
- tighter relation between syntax and semanties: in some systems open formulas are wffs, but they are not interpreted. A valuation function that covers open formulas would mean that all wffs are interpreted

Two Problems: Problem 1

This definition of the valuation function has at least two problems:
Problem 1: the valuation function is only defined for closed RL-wffs. It is undefined for open RL-wffs (wffs with free variables, e.g. Px). A more inclusive valuation function might be desirable for a few reasons:

- special wffs: Ixx where I is the two-place identity predicate
- compositional concerns: shouldn't the truth value of $(\exists x) P x$ be determined by the existential quantifier and $P x$, rather than say a wff $P a \vee P b, \ldots P n$?
- tighter relation between syntax and semantics: in some systems open formulas are wffs, but they are not interpreted. A valuation function that covers onen formulas would mean that all wffs are interpreted

Two Problems: Problem 1

This definition of the valuation function has at least two problems:
Problem 1: the valuation function is only defined for closed RL-wffs. It is undefined for open RL-wffs (wffs with free variables, e.g. Px). A more inclusive valuation function might be desirable for a few reasons:

- special wffs: Ixx where I is the two-place identity predicate
- compositional concerns: shouldn't the truth value of $(\exists x) P x$ be determined by the existential quantifier and $P x$, rather than say a wff $P a \vee P b, \ldots P n$?
- tighter relation between syntax and semantics: in some systems open formulas are wffs, but they are not interpreted. A valuation function that covers open formulas would mean that all wffs are interpreted

Two Problems: Problem 2

Problem 2: it assumes that there is an RL-name for every item in the domain.

- Notice: we specify the value of existentially and universally quantified wffs in terms of non-quantified wffs Fxamnle: $v_{\wedge 1}(\forall x) \phi=T$ iff $v_{\mu} \phi(\alpha / x)$ for every name α in RL
- the issue isn't that we don't have enough names
- the issue is there is no guarantee that every object in the domain is named

Two Problems: Problem 2

Problem 2: it assumes that there is an RL-name for every item in the domain.

- Notice: we specify the value of existentially and universally quantified wffs in terms of non-quantified wffs. Example: $v_{\mathcal{M}}(\forall x) \phi=T$ iff $v_{\mathcal{M}} \phi(\alpha / x)$ for every name α in RL.
- the issue isn't that we don't have enough names
- the issue is there is no guarantee that every object in the domain is named

Two Problems: Problem 2

Problem 2: it assumes that there is an RL-name for every item in the domain.

- Notice: we specify the value of existentially and universally quantified wffs in terms of non-quantified wffs. Example: $v_{\mathcal{M}}(\forall x) \phi=T$ iff $v_{\mathcal{M}} \phi(\alpha / x)$ for every name α in RL.
- the issue isn't that we don't have enough names
- the issue is there is no guarantee that every object in the domain is named

Two Problems: Problem 2

Problem 2: it assumes that there is an RL-name for every item in the domain.

- Notice: we specify the value of existentially and universally quantified wffs in terms of non-quantified wffs. Example: $v_{\mathcal{M}}(\forall x) \phi=T$ iff $v_{\mathcal{M}} \phi(\alpha / x)$ for every name α in RL.
- the issue isn't that we don't have enough names
- the issue is there is no guarantee that every object in the domain is named
- Some objects may not be named

Cats that are pets are usually named; but some stray cats may be unnamed.

The key idea

- The key idea behind fixing both problems is to treat variables like pronouns rather than names.
- In "It is happy" (Hx), the pronoun "it" can refer potentially to any item in the domain. Its truth or falsity will depend upon the referent of x or "it"
- since the referent of nronouns can vary and they can notentially refer to any item in the domain, we can use this feature to generalize about objects in the domain

The key idea

- The key idea behind fixing both problems is to treat variables like pronouns rather than names.
- In "It is happy" $(H x)$, the pronoun "it" can refer potentially to any item in the domain. Its truth or falsity will depend upon the referent of x or "it"
- since the referent of pronouns can vary and they can potentially refer to any item in the domain, we can use this feature to generalize about objects in the domain

The key idea

- The key idea behind fixing both problems is to treat variables like pronouns rather than names.
- In "It is happy" $(H x)$, the pronoun "it" can refer potentially to any item in the domain. Its truth or falsity will depend upon the referent of x or "it"
- since the referent of pronouns can vary and they can potentially refer to any item in the domain, we can use this feature to generalize about objects in the domain

Fixing the first problem: The key idea

With respect to the first problem:

- We can assign a truth value to Px "he (or she or it) is a person" if there is a way of identifying the referent of the nronoun "he"
- The truth value of such a wff will depend upon the referent of "he"
- If "he" designates something that is not a person, then P is false; while if it identifies something that is a person, then $P x$ is true.

Fixing the first problem: The key idea

With respect to the first problem:

- We can assign a truth value to $P x$ "he (or she or it) is a person" if there is a way of identifying the referent of the pronoun "he".
- The truth value of such a wff will depend upon the referent of "he'
- If "he" designates something that is not a person, then $P x$ is false; while if it identifies something that is a person, then $P x$ is true.

Fixing the first problem: The key idea

With respect to the first problem:

- We can assign a truth value to Px "he (or she or it) is a person" if there is a way of identifying the referent of the pronoun "he".
- The truth value of such a wff will depend upon the referent of "he".
- If "he" designates something that is not a person, then $P x$ is false; while if it identifies something that is a person, then $P x$ is true.

Fixing the first problem: The key idea

With respect to the first problem:

- We can assign a truth value to $P x$ "he (or she or it) is a person" if there is a way of identifying the referent of the pronoun "he".
- The truth value of such a wff will depend upon the referent of "he".
- If "he" designates something that is not a person, then P_{x} is false; while if it identifies something that is a person, then $P x$ is true.

Fixing the second problem: The key idea

With respect to the second problem:

- ($\exists x) P x$ "someone is a person" is true iff there is at least one way of identifying the referent of "he" such that the object is a person
- In short: $v(\exists x) D=T$ iff $v(D x)=T$ for at least one referent of pronoun x
- $(\forall x) P x$ "everyone is a person" is true iff on every way of identifying the referent of "he" that object is a person
- In short: $v(\forall x) P x=T$ iff $v(P x)=T$ no matter the referent of pronoun x

Fixing the second problem: The key idea

With respect to the second problem:

- $(\exists x) P x$ "someone is a person" is true iff there is at least one way of identifying the referent of "he" such that the object is a person.
- In short: $v(\exists x) P=T$ iff $v(P x)=T$ for at least one referent of pronoun x
- $(\forall x) P x$ "everyone is a person" is true iff on every way of identifying the referent of "he" that object is a person.
- In short: $v(\forall x) P x=T$ iff $v(P x)=T$ no matter the referent of pronoun x

Fixing the second problem: The key idea

With respect to the second problem:

- $(\exists x) P x$ "someone is a person" is true iff there is at least one way of identifying the referent of "he" such that the object is a person.
- In short: $v(\exists x) P=T$ iff $v(P x)=T$ for at least one referent of pronoun x
- $(\forall x) P x$ "everyone is a person" is true iff on every way of identifying the referent of "he" that object is a person
- In short: $v(\forall x) P x=T$ iff $v(P x)=T$ no matter the referent of pronoun x

Fixing the second problem: The key idea

With respect to the second problem:

- $(\exists x) P x$ "someone is a person" is true iff there is at least one way of identifying the referent of "he" such that the object is a person.
- In short: $v(\exists x) P=T$ iff $v(P x)=T$ for at least one referent of pronoun x
- $(\forall x) P x$ "everyone is a person" is true iff on every way of identifying the referent of "he" that object is a person.
- In short: $v(\forall x) P x=T$ iff $v(P x)=T$ no matter the referent of pronoun x

Fixing the second problem: The key idea

With respect to the second problem:

- $(\exists x) P x$ "someone is a person" is true iff there is at least one way of identifying the referent of "he" such that the object is a person.
- In short: $v(\exists x) P=T$ iff $v(P x)=T$ for at least one referent of pronoun x
- $(\forall x) P x$ "everyone is a person" is true iff on every way of identifying the referent of "he" that object is a person.
- In short: $v(\forall x) P x=T$ iff $v(P x)=T$ no matter the referent of pronoun x

Variable assignment

- In order to fix both problems, we will introduce some additional technical apparatus.
- Let's begin with the notion of a variable assignment.

Definition (variable assignment)

A variable assignment g for a model $\mathcal{M}(\langle\mathcal{D}, \mathscr{O})$ is a function that assigns to each variable α some object in \mathcal{D}

- The basic idea is that a variable assignment takes each and every variable and says what object it refers to.

Variable assignment

- In order to fix both problems, we will introduce some additional technical apparatus.
- Let's begin with the notion of a variable assignment.

Definition (variable assignment)

A variable assignment g for a model $\mathcal{M}(\langle\mathcal{D}, \mathscr{O})$ is a function that assigns to each variable α some object in \mathcal{D}

- The basic idea is that a variable assignment takes each and every variable and says what object it refers to

Variable assignment

- In order to fix both problems, we will introduce some additional technical apparatus.
- Let's begin with the notion of a variable assignment.

Definition (variable assignment)

A variable assignment g for a model $\mathcal{M}(\langle\mathcal{D}, \mathscr{I}\rangle)$ is a function that assigns to each variable α some object in \mathcal{D}.

- The basic idea is that a variable assignment takes each and every variable and savs what ohiect it refers to

Variable assignment

- In order to fix both problems, we will introduce some additional technical apparatus.
- Let's begin with the notion of a variable assignment.

Definition (variable assignment)

A variable assignment g for a model $\mathcal{M}(\langle\mathcal{D}, \mathscr{I}\rangle)$ is a function that assigns to each variable α some object in \mathcal{D}.

- The basic idea is that a variable assignment takes each and every variable and says what object it refers to.

Variable assignment: notation

- We need a way to specify variable assignments so that it is clear which item in the domain is assigned to which variable in the language
- We will use g to stand for a variable assignment
- " $g(x)$ " will specify the variable assignment of x
- " $g(x)$ " reads the variable assignment g that takes x as input (it will yield an item from the domain as a value)

Example

1. $g(x)=u_{1}$ assigns u_{1} from the domain to the variable x
2. $g(y)=u_{2}$ assigns u_{2} from the domain to the variable y
3. $g(z)=1$ iz assigns l iz from the domain to the variable z

Variable assignment: notation

- We need a way to specify variable assignments so that it is clear which item in the domain is assigned to which variable in the language
- We will use g to stand for a variable assignment
- " $g(x)$ " will specify the variable assignment of x
- " $g(x)$ " reads the variable assignment g that takes x as input (it will yield an item from the domain as a value)

Example

1. $g(x)=u_{1}$ assigns u_{1} from the domain to the variable x
2. $g(y)=u_{2}$ assigns u_{2} from the domain to the variable y
3. $g(z)=L i z$ assigns Liz from the domain to the variable z

Variable assignment: notation

- We need a way to specify variable assignments so that it is clear which item in the domain is assigned to which variable in the language
- We will use g to stand for a variable assignment
- " $g(x)$ " will specify the variable assignment of x
- " $g(x)$ " reads the variable assignment g that takes x as input (it will yield an item from the domain as a value).

Example

1. $g(x)=u_{1}$ assigns u_{1} from the domain to the variable x
2. $g(y)=u_{2}$ assigns u_{2} from the domain to the variable y
3. $g(z)=$ Liz assigns Liz from the domain to the variable z

Variable assignment: notation

- We need a way to specify variable assignments so that it is clear which item in the domain is assigned to which variable in the language
- We will use g to stand for a variable assignment
- " $g(x)$ " will specify the variable assignment of x
- " $g(x)$ " reads the variable assignment g that takes x as input (it will yield an item from the domain as a value).

Example

1. $g(x)=u_{1}$ assigns u_{1} from the domain to the variable x
2. $g(y)=u_{2}$ assigns u_{2} from the domain to the variable y
3. $g(z)=$ Liz assigns Liz from the domain to the variable z

Relativizing the valuation function

- The next step is to relativize the valuation function not merely to a model (\mathcal{M}) but also to a variable assignment (g)
- Not simply $v_{\mathcal{M}}(\phi)$ but $v_{\mathcal{M}, g}(\phi)$
- Under this valuation function, wffs are true or false with respect to a model (\mathcal{M}) and a variable assignment (g)
- Not simply $v(\phi)=T$ but $v_{\mathcal{M}, g}(\phi)=T$
- Relativizing the valuation function to variable assignments allows the valuation function not only to cover closed atomic wffs but also open atomic wffs (fixing Problem 1)

Relativizing the valuation function

- The next step is to relativize the valuation function not merely to a model (\mathcal{M}) but also to a variable assignment (g)
- Not simply $v_{\mathcal{M}}(\phi)$ but $v_{\mathcal{M}, g}(\phi)$
- Under this valuation function, wffs are true or false with respect to a model (M) and a variable assignment (g)
- Not simnly $v(\infty)=T$ but $v_{\mathrm{M}} . \mathrm{g}(\sigma)=T$
- Relativizing the valuation function to variable assignments allows the valuation function not only to cover closed atomic wffs but also open atomic wffs (fixing Problem 1)

Relativizing the valuation function

- The next step is to relativize the valuation function not merely to a model (\mathcal{M}) but also to a variable assignment (g)
- Not simply $v_{\mathcal{M}}(\phi)$ but $v_{\mathcal{M}, g}(\phi)$
- Under this valuation function, wffs are true or false with respect to a model (\mathcal{M}) and a variable assignment (g)
- Not simply $\vee(\phi)=T$ but $v_{\mathcal{M}, g}(\phi)=T$
- Relativizing the valuation function to variable assignments allows the valuation function not only to cover closed atomic wffs but also open atomic wffs (fixing Problem 1)

Relativizing the valuation function

- The next step is to relativize the valuation function not merely to a model (\mathcal{M}) but also to a variable assignment (g)
- Not simply $v_{\mathcal{M}}(\phi)$ but $v_{\mathcal{M}, g}(\phi)$
- Under this valuation function, wffs are true or false with respect to a model (\mathcal{M}) and a variable assignment (g)
- Not simply $v(\phi)=T$ but $v_{\mathcal{M}, g}(\phi)=T$
- Relativizing the valuation function to variable assignments allows the valuation function not only to cover closed atomic wffs but also open atomic wffs (fixing Problem 1)

Relativizing the valuation function

- The next step is to relativize the valuation function not merely to a model (\mathcal{M}) but also to a variable assignment (g)
- Not simply $v_{\mathcal{M}}(\phi)$ but $v_{\mathcal{M}, g}(\phi)$
- Under this valuation function, wffs are true or false with respect to a model (\mathcal{M}) and a variable assignment (g)
- Not simply $v(\phi)=T$ but $v_{\mathcal{M}, g}(\phi)=T$
- Relativizing the valuation function to variable assignments allows the valuation function not only to cover closed atomic wffs but also open atomic wffs (fixing Problem 1)

Valuation function for closed and open atomic wffs

This relativization allows us to formulate two different rules for atomic wffs in RL (let α be any name and x be any variable):

Definition
1a if $P \alpha_{1}$

1b if $P x_{1}$
Otherwise,

Relativizing the valuation function to g

1. does not change how we evaluate closed atomic wffs
2. allows for assigning truth values to open atomic wffs

Valuation function for closed and open atomic wffs

This relativization allows us to formulate two different rules for atomic wffs in RL (let α be any name and x be any variable):

Definition

1a if $P \alpha_{1} \ldots \alpha_{n}$ is a closed atomic wff in RL, then $v_{\mathcal{M}, g}\left(P \alpha_{1} \ldots \alpha_{n}\right)=T$ iff $\left\langle\mathscr{I}\left(\alpha_{1}\right), \ldots, \mathscr{I}\left(\alpha_{n}\right)\right\rangle \in \mathscr{I}(P)$. Otherwise, $v_{\mathcal{M}, g}\left(P \alpha_{1} \ldots \alpha_{n}\right)=F$
1b if $P x_{1} \ldots x_{n}$ is an open atomic wff in RL, then $v_{\mathcal{M}, g}\left(P x_{1} \ldots x_{n}\right)=T$ iff $\left\langle g\left(x_{1}\right), \ldots, g\left(x_{n}\right)\right\rangle \in \mathscr{I}(P)$. Otherwise, $v_{\mathcal{M}, g}\left(P x_{1} \ldots x_{n}\right)=F$

Relativizing the valuation function to g

1. does not change how we evaluate closed atomic wffs
2. allows for assigning truth values to open atomic wffs

Valuation function for closed and open atomic wffs

This relativization allows us to formulate two different rules for atomic wffs in RL (let α be any name and x be any variable):

Definition

1a if $P \alpha_{1} \ldots \alpha_{n}$ is a closed atomic wff in RL, then $v_{\mathcal{M}, g}\left(P \alpha_{1} \ldots \alpha_{n}\right)=T$ iff

$$
\left\langle\mathscr{I}\left(\alpha_{1}\right), \ldots, \mathscr{I}\left(\alpha_{n}\right)\right\rangle \in \mathscr{I}(P) . \text { Otherwise, } v_{\mathcal{M}, g}\left(P \alpha_{1} \ldots \alpha_{n}\right)=F
$$

1b if $P x_{1} \ldots x_{n}$ is an open atomic wff in RL, then $v_{\mathcal{M}, g}\left(P x_{1} \ldots x_{n}\right)=T$ iff

$$
\left\langle g\left(x_{1}\right), \ldots, g\left(x_{n}\right)\right\rangle \in \mathscr{I}(P) . \text { Otherwise, } v_{\mathcal{M}, g}\left(P x_{1} \ldots x_{n}\right)=F
$$

Relativizing the valuation function to g :

1. does not change how we evaluate closed atomic wffs
2. allows for assigning truth values to open atomic wffs

Valuation function for closed and open atomic wffs

This relativization allows us to formulate two different rules for atomic wffs in RL (let α be any name and x be any variable):

Definition

1a if $P \alpha_{1} \ldots \alpha_{n}$ is a closed atomic wff in RL, then $v_{\mathcal{M}, g}\left(P \alpha_{1} \ldots \alpha_{n}\right)=T$ iff

$$
\left\langle\mathscr{I}\left(\alpha_{1}\right), \ldots, \mathscr{I}\left(\alpha_{n}\right)\right\rangle \in \mathscr{I}(P) . \text { Otherwise, } v_{\mathcal{M}, g}\left(P \alpha_{1} \ldots \alpha_{n}\right)=F
$$

1b if $P x_{1} \ldots x_{n}$ is an open atomic wff in RL, then $v_{\mathcal{M}, g}\left(P x_{1} \ldots x_{n}\right)=T$ iff

$$
\left\langle g\left(x_{1}\right), \ldots, g\left(x_{n}\right)\right\rangle \in \mathscr{I}(P) . \text { Otherwise, } v_{\mathcal{M}, g}\left(P x_{1} \ldots x_{n}\right)=F
$$

Relativizing the valuation function to g :

1. does not change how we evaluate closed atomic wffs
2. allows for assigning truth values to open atomic wffs

Valuation function for closed and open atomic wffs

- Notice that we now can define the truth value of wffs that have free variables.
- Take the wff Ixx where I is the two-place predicate " x is identical to x "
- $v_{\mathcal{M}, g}(\mid x x)=T$ iff $\langle g(x), g(x)\rangle \in \mathscr{I}(I)$.
- In other words. " x is identical to x " is true (relative to the model and the variable assignment) if and only if the ordered pair consisting of the variable assignment $g(x)$ and $g(x)$ is in the interpretation of I
- Dut cuen more plainly: if the obiects pieked out by $g(x)$ are identical to each other, then " x is identical to x " is true

Valuation function for closed and open atomic wffs

- Notice that we now can define the truth value of wffs that have free variables.
- Take the wff $I x x$ where I is the two-place predicate " x is identical to x ".
- $v_{\mathcal{M}, g}(\mid x x)=T$ iff $\langle g(x), g(x)\rangle \in \mathscr{I}(I)$.
- In other words, " x is identical to x " is true (relative to the model and the variable assignment) if and only if the ordered nair consisting of the variable assignment $g(x)$ and $g(x)$ is in the interpretation of $/$
- Put even more plainly: if the objects picked out by $g(x)$ are identical to each other, then " x is identical to x " is true

Valuation function for closed and open atomic wffs

- Notice that we now can define the truth value of wffs that have free variables.
- Take the wff $I x x$ where I is the two-place predicate " x is identical to x ".
- $v_{\mathcal{M}, g}(I x x)=T$ iff $\langle g(x), g(x)\rangle \in \mathscr{I}(I)$.
- In other words, " x is identical to x " is true (relative to the model and the variable assignment) if and only if the ordered pair consisting of the variable assignment $g(x)$ and $g(x)$ is in the interpretation of I
- Put even more plainly: if the objects picked out by $g(x)$ are identical to each other, then " x is identical to x " is true

Valuation function for closed and open atomic wffs

- Notice that we now can define the truth value of wffs that have free variables.
- Take the wff $I x x$ where I is the two-place predicate " x is identical to x ".
- $v_{\mathcal{M}, g}(I x x)=T$ iff $\langle g(x), g(x)\rangle \in \mathscr{I}(I)$.
- In other words, " x is identical to x " is true (relative to the model and the variable assignment) if and only if the ordered pair consisting of the variable assignment $g(x)$ and $g(x)$ is in the interpretation of I
- Put even more plainly: if the objects picked out by $g(x)$ are identical to each other, then " x is identical to x " is true

Valuation function for closed and open atomic wffs

- Notice that we now can define the truth value of wffs that have free variables.
- Take the wff $I x x$ where I is the two-place predicate " x is identical to x ".
- $v_{\mathcal{M}, g}(I x x)=T$ iff $\langle g(x), g(x)\rangle \in \mathscr{I}(I)$.
- In other words, " x is identical to x " is true (relative to the model and the variable assignment) if and only if the ordered pair consisting of the variable assignment $g(x)$ and $g(x)$ is in the interpretation of I
- Put even more plainly: if the objects picked out by $g(x)$ are identical to each other, then " x is identical to x " is true

Open wffs can be assigned truth values
$v(C x)=T$ (" x is a cat") is true iff $g(x)$ assigns x to an item in the interpretation of
C. That is, iff $g(x) \in \mathscr{I}(C)$.

There is still a problem!

Problem!

- valuation rules apply only to atomic wffs containing either names or variables but not to wffs containing both names and variables
- The valuation rule works for Pa, Lab, Px, Lxx
- BUT NOT for Lax, Lxa (names and variables)
- the valuation rule is undefined for these wffs

There is still a problem!

Problem!

- valuation rules apply only to atomic wffs containing either names or variables but not to wffs containing both names and variables
- The valuation rule works for Pa, Lab, Px, Lxx
- BUT NOT for Lax, Lxa (names and variables)
- the valuation rule is undefined for these wffs

There is still a problem!

Problem!

- valuation rules apply only to atomic wffs containing either names or variables but not to wffs containing both names and variables
- The valuation rule works for $P a, L a b, P x, L x x$
- BUT NOT for Lax, Lxa (names and variables)
- the valuation rule is undefined for these wffs

There is still a problem!

Problem!

- valuation rules apply only to atomic wffs containing either names or variables but not to wffs containing both names and variables
- The valuation rule works for $P a, L a b, P x, L x x$
- BUT NOT for Lax, Lxa (names and variables)
- the valuation rule is undefined for these wffs

Generalizing the valuation function

To solve this problem, we will need to do two things:

1. define the notion of a term that includes names and variables
2. define the notion of a denotation of a term that specifies that items in the domain that each term picks out

Generalizing the valuation function

To solve this problem, we will need to do two things:

1. define the notion of a term that includes names and variables
2. define the notion of a denotation of a term that specifies that items in the domain that each term picks out

Generalizing the valuation function

To solve this problem, we will need to do two things:

1. define the notion of a term that includes names and variables
2. define the notion of a denotation of a term that specifies that items in the domain that each term picks out

RL-Term (name or variable)

First, let's define the notion of an RL-term:
Definition (RL-term)
An RL-term t is any name or variable in RL

Example

1. x is a variable; therefore it is a term
2. y is a variable; therefore it is a term
3. b is a name; therefore it is a term
4. d is a name; therefore it is a term

RL-Term (name or variable)

First, let's define the notion of an RL-term:

Definition (RL-term)

An RL-term t is any name or variable in RL.

Example

1. x is a variable; therefore it is a term
2. y is a variable; therefore it is a term
3. b is a name; therefore it is a term
4. d is a name; therefore it is a term

RL-Term (name or variable)

First, let's define the notion of an RL-term:

Definition (RL-term)

An RL-term t is any name or variable in RL.

Example

1. x is a variable; therefore it is a term
2. y is a variable; therefore it is a term
3. b is a name; therefore it is a term
4. d is a name; therefore it is a term

Denotation of an RL-term

Second, let's define and introduce some notation for the denotation of a term.

- Let the expression $[t]_{\mathcal{M}, g}$ read the denotation of the term t relative to a model \mathcal{M} and variable assignment g

Next, let's define the notion of a denotation of a term
Definition (denotation of a term)
Let \mathcal{M} be a model, g be a variable assignment, t be a term (name or variable). The denotation of t relative to a model and a variable assignment (that is, $[t]_{\mathcal{M}, g}$) is

1. $\mathscr{S}(t)$ if t is an RL-name, or
2. $g(t)$ if t is an RL-variable.

Denotation of an RL-term

Second, let's define and introduce some notation for the denotation of a term.

- Let the expression $[t]_{\mathcal{M}, g}$ read the denotation of the term t relative to a model \mathcal{M} and variable assignment g.

Next, let's define the notion of a denotation of a term
Definition (denotation of a term)
Let \mathcal{M} be a model, g be a variable assignment, t be a term (name or variable). The
denotation of t relative to a model and a variable assignment (that is, $[t]_{\mathcal{M}, g}$) is:

1. $\mathcal{J}(t)$ if t is an RL-name, or
2. $g(t)$ if t is an RL-variable.

Denotation of an RL-term

Second, let's define and introduce some notation for the denotation of a term.

- Let the expression $[t]_{\mathcal{M}, g}$ read the denotation of the term t relative to a model \mathcal{M} and variable assignment g.

Next, let's define the notion of a denotation of a term
Definition (denotation of a term)
Let \mathcal{M} be a model, g be a variable assignment, t be a term (name or variable). The
denotation of t relative to a model and a variable assignment (that is, $[t]_{\mathcal{M} g}$) is:

1. $\mathscr{I}(t)$ if t is an RL-name, or
2. $g(t)$ if t is an RL-variable.

Denotation of an RL-term

Second, let's define and introduce some notation for the denotation of a term.

- Let the expression $[t]_{\mathcal{M}, g}$ read the denotation of the term t relative to a model \mathcal{M} and variable assignment g.

Next, let's define the notion of a denotation of a term

Definition (denotation of a term)

Let \mathcal{M} be a model, g be a variable assignment, t be a term (name or variable). The denotation of t relative to a model and a variable assignment (that is, $[t]_{\mathcal{M}, g}$) is:

1. $\mathscr{I}(t)$ if t is an RL-name, or
2. $g(t)$ if t is an RL-variable.

Denotation of an RL-term: Examples

Let's look at some examples of the denotation of a term. To do this, we will need part of a model and a variable assignment. So first consider the following:

Now let's look at some examples of the denotation of a term
Example

1. $[x]_{\mathcal{M}, g}=g(x)=1$
2. $[a]_{\mathcal{M}, g}=\mathscr{I}(a)=1$
3. $[z]_{\mathcal{M}_{\rho}}=g(z)=1$
4. $[b]_{\mathcal{M}, g}=\mathscr{I}(b)=1$

Denotation of an RL-term: Examples

Let's look at some examples of the denotation of a term. To do this, we will need part of a model and a variable assignment. So first consider the following:

- $\mathcal{D}:\{1,2,3\}$
- $\mathscr{I}(a)=1, \mathscr{I}(b)=2, \mathscr{I}(c)=3$
- $g(x)=1, g(y)=2, g(z)=1$

Now let's look at some examples of the denotation of a term

Example

1. $[x]$ M. $g=g(x)=1$
2. $[a]_{\mathcal{M}, g}=\mathscr{I}(a)=1$
3. $[z]_{\mathcal{M}, g}=g(z)=1$
4. $[b]_{\mathcal{M} \mathcal{G}}=\mathscr{I}(b)=1$

Denotation of an RL-term: Examples

Let's look at some examples of the denotation of a term. To do this, we will need part of a model and a variable assignment. So first consider the following:

- $\mathcal{D}:\{1,2,3\}$
- $\mathscr{I}(a)=1, \mathscr{I}(b)=2, \mathscr{I}(c)=3$
- $g(x)=1, g(y)=2, g(z)=1$

Now let's look at some examples of the denotation of a term

Example

1. $[x]_{\mathcal{M}, g}=g(x)=1$
2. $[a]_{\mathcal{M}, g}=\mathscr{I}(a)=1$
3. $[z]_{\mathcal{M}, g}=g(z)=1$
4. $[b]_{\mathcal{M}, g}=\mathscr{I}(b)=1$

Generalized valuation function for atomic wffs

We can now combine the two valuation functions into a single valuation rule that makes us of the notion of a denotation of a term.

Definition
if t is a term, P is an n-place predicate, and $P t_{1} \ldots t_{n}$ is an atomic wff in RL, then

Generalized valuation function for atomic wffs

We can now combine the two valuation functions into a single valuation rule that makes us of the notion of a denotation of a term.

Definition

if t is a term, P is an n-place predicate, and $P t_{1} \ldots t_{n}$ is an atomic wff in RL, then $v_{\mathcal{M}, g}\left(P t_{1} \ldots t_{n}\right)=T$ iff $\left\langle\left[t_{1}\right]_{\mathcal{M}, g}, \ldots,\left[t_{n}\right]_{\mathcal{M}, g}\right\rangle \in \mathscr{I}(P)$

Examples

- take Lax, an atomic wff containing the name a and variable x ("Al loves x ".)
- $v_{\mathcal{M}, g}(L a x)=T$ iff $\left\langle[a]_{\mathcal{M}, g},[x]_{\mathcal{M}, g}\right\rangle \in \mathscr{I}(L)$
- $v_{\mathcal{M}, g}(\operatorname{Lax})=T$ iff the ordered pair consisting of the denotation of the name a and the denotation of the variable x are in the interpretation of L
- "Al loves x " is true provided, relative to a model and relative to a variable assignment, the ordered pair $\langle A /,[x]\rangle$ is in the interpretation of the two-place predicate $L x y$ (x loves y).

Examples

- take Lax, an atomic wff containing the name a and variable x ("Al loves x ".)
- $v_{\mathcal{M}, g}(\operatorname{Lax})=T$ iff $\left\langle[a]_{\mathcal{M}, g},[x]_{\mathcal{M}, g}\right\rangle \in \mathscr{I}(L)$
- $V_{\mathcal{M}, g}(\operatorname{Lax})=T$ iff the ordered pair consisting of the denotation of the name a and the denotation of the variable x are in the interpretation of L
- "Al loves x " is true provided, relative to a model and relative to a var able assignment, the ordered pair $\langle A I,[x]\rangle$ is in the interpretation of the two-place predicate Lxy (x loves y).

Examples

- take Lax, an atomic wff containing the name a and variable x ("Al loves x ".)
- $v_{\mathcal{M}, g}(\operatorname{Lax})=T$ iff $\left\langle[a]_{\mathcal{M}, g},[x]_{\mathcal{M}, g}\right\rangle \in \mathscr{I}(L)$
- $v_{\mathcal{M}, g}(\operatorname{Lax})=T$ iff the ordered pair consisting of the denotation of the name a and the denotation of the variable x are in the interpretation of L
- "Al loves x " is true provided, relative to a model and relative to a variable assignment, the ordered pair $\langle A /,[x]\rangle$ is in the interpretation of the two-place predicate $L x y(x$ loves $y)$.

Examples

- take Lax, an atomic wff containing the name a and variable x ("Al loves x ".)
- $v_{\mathcal{M}, g}(\operatorname{Lax})=T$ iff $\left\langle[a]_{\mathcal{M}, g},[x]_{\mathcal{M}, g}\right\rangle \in \mathscr{I}(L)$
- $v_{\mathcal{M}, g}(\operatorname{Lax})=T$ iff the ordered pair consisting of the denotation of the name a and the denotation of the variable x are in the interpretation of L
- "Al loves x " is true provided, relative to a model and relative to a variable assignment, the ordered pair $\langle A /,[x]\rangle$ is in the interpretation of the two-place predicate Lxy (x loves y).

Problem 2: Quantified wffs and names

- We have a solution for Problem 1.
- But Problem 2 remains. That is, we are still unpacking the truth value of quantified wffs using names
- One initial thought is to sav $v_{\mathcal{M}, g}(\exists x) P X=T$ iff $v_{M, g} P(\alpha / X)=T$ (for some name α) or $v_{\mathcal{M}, g}(P x)=T$
- Promising approach since we have a procedure for determining the truth value of $P x$ relative to g; namely, $v_{\mathcal{M}, g}(P x)=T$ iff $\left\langle[x]_{\mathcal{M}, g}\right\rangle \in \mathscr{I}(P)$. Thus, $v_{\mathcal{M}, g}(\exists x) P x=T$ iff $\left\langle[x]_{\mathcal{M}, g}\right\rangle \in \mathscr{I}(P)$
- Also an attractive option since the truth value of $(\exists x) P x$ is determined by its parts: the existential quantifier and $P x$.

Problem 2: Quantified wffs and names

- We have a solution for Problem 1.
- But Problem 2 remains. That is, we are still unpacking the truth value of quantified wffs using names
- One initial thought is to say $v_{\mathcal{M}, g}(\exists x) P x=T$ iff $v_{\mathcal{M}, g} P(\alpha / x)=T$ (for some name α) or $v_{\mathcal{M}, g}(P x)=T$
- Promising annroach since we have a procedure for determining the truth value of $P \times$ relative to g; namely, $v_{\mathcal{M}, g}(P x)=T$ iff $\left\langle[x]_{\mathcal{M}, g}\right\rangle \in \mathscr{I}(P)$. Thus, $v_{\mathcal{M}, g}(\exists x) P x=T$ iff $\left\langle[x]_{\mathcal{M}, g}\right\rangle \in \mathscr{I}(P)$
- Also an attractive option since the truth value of $(\exists x) P x$ is determined by its parts: the existential quantifier and $P x$.

Problem 2: Quantified wffs and names

- We have a solution for Problem 1.
- But Problem 2 remains. That is, we are still unpacking the truth value of quantified wffs using names
- One initial thought is to say $v_{\mathcal{M}, g}(\exists x) P x=T$ iff $v_{\mathcal{M}, g} P(\alpha / x)=T$ (for some name α) or $v_{\mathcal{M}, g}(P x)=T$.
- Promising approach since we have a procedure for determining the truth value of $P \times$ relative to g; namely, $v_{\mathcal{M}, g}(P x)=T$ iff $\left\langle[x]_{\mathcal{M}, g}\right\rangle \in \mathscr{I}(P)$. Thus, $v_{\mathcal{M}, g}(\exists x) P x=T$ iff $\left\langle[x]_{\mathcal{M}, g}\right\rangle \in \mathscr{I}(P)$
- Also an attractive option since the truth value of $(\exists x) P x$ is determined by its parts: the existential quantifier and $P x$.

Problem 2: Quantified wffs and names

- We have a solution for Problem 1.
- But Problem 2 remains. That is, we are still unpacking the truth value of quantified wffs using names
- One initial thought is to say $v_{\mathcal{M}, g}(\exists x) P x=T$ iff $v_{\mathcal{M}, g} P(\alpha / x)=T$ (for some name α) or $v_{\mathcal{M}, g}(P x)=T$.
- Promising approach since we have a procedure for determining the truth value of $P x$ relative to g; namely, $v_{\mathcal{M}, g}(P x)=T$ iff $\left\langle[x]_{\mathcal{M}, g}\right\rangle \in \mathscr{I}(P)$. Thus, $v_{\mathcal{M}, g}(\exists x) P x=T$ iff $\left\langle[x]_{\mathcal{M}, g}\right\rangle \in \mathscr{I}(P)$
- Also an attractive option since the truth value of $(\exists x) P x$ is determined by its parts: the existential quantifier and $P x$.

Problem 2: Quantified wffs and names

- We have a solution for Problem 1.
- But Problem 2 remains. That is, we are still unpacking the truth value of quantified wffs using names
- One initial thought is to say $v_{\mathcal{M}, g}(\exists x) P x=T$ iff $v_{\mathcal{M}, g} P(\alpha / x)=T$ (for some name α) or $v_{\mathcal{M}, g}(P x)=T$.
- Promising approach since we have a procedure for determining the truth value of $P x$ relative to g; namely, $v_{\mathcal{M}, g}(P x)=T$ iff $\left\langle[x]_{\mathcal{M}, g}\right\rangle \in \mathscr{I}(P)$. Thus, $v_{\mathcal{M}, g}(\exists x) P x=T$ iff $\left\langle[x]_{\mathcal{M}, g}\right\rangle \in \mathscr{I}(P)$
- Also an attractive option since the truth value of $(\exists x) P x$ is determined by its parts: the existential quantifier and $P x$.

Problem 2: Quantified wffs and names

- Does not get us the right result since the variable assignment g takes each variable and assigns it a single item from the domain.
- This means that $g(x)$ refers to a single item in the domain
- Problematic because an existential quantified wff $P x$ is true not so long as the single item picked out by the denotation of x is in P, but so long as at least one item from the domain is in the interpretation of P

Problem 2: Quantified wffs and names

- Does not get us the right result since the variable assignment g takes each variable and assigns it a single item from the domain.
- This means that $g(x)$ refers to a single item in the domain
- Problematic because an existential quantified wff Px is true not so long as the single item picked out by the denotation of x is in P, but so long as at least one item from the domain is in the interpretation of P.

Problem 2: Quantified wffs and names

- Does not get us the right result since the variable assignment g takes each variable and assigns it a single item from the domain.
- This means that $g(x)$ refers to a single item in the domain
- Problematic because an existential quantified wff $P x$ is true not so long as the single item picked out by the denotation of x is in P, but so long as at least one item from the domain is in the interpretation of P.

Problem 2: Quantified wffs and names

In other words:

- we cannot specify the truth value of quantified wffs using variable assignments alone
- we need a way of specifying the truth value of a wff like $(\exists x) P x$ such that this wff is true if there is at least one variable assignment $g(x)$ such that $g(x) \in \mathscr{I}(P)$
- in other words, we need a wav to refer to other variable assignments relative to g

Problem 2: Quantified wffs and names

In other words:

- we cannot specify the truth value of quantified wffs using variable assignments alone
- we need a way of specifying the truth value of a wff like $(\exists x) P x$ such that this wff is true if there is at least one variable assignment $g(x)$ such that $g(x) \in \mathscr{I}(P)$
- in other words, we need a way to refer to other variable assignments relative to g

Problem 2: Quantified wffs and names

In other words:

- we cannot specify the truth value of quantified wffs using variable assignments alone
- we need a way of specifying the truth value of a wff like $(\exists x) P x$ such that this wff is true if there is at least one variable assignment $g(x)$ such that $g(x) \in \mathscr{I}(P)$
- in other words, we need a way to refer to other variable assignments relative to g

Variant variable assignments

- Let's introduce the notion of a variant variable assignment:

Definition (variant variable assignment)

Let α be a variable and u be an item in the domain $u \in \mathcal{D}$ of a model, a variant variable assignment $g_{\|}^{\alpha}$ is a variable assignment g for a model \mathcal{M} except that it assigns u to α.

Reading variant variable assignment notation

1. g_{u}^{\sim} is read as the variab'e assignment g except that the variable α is assigned the item u from the domain
2. g_{5}^{α} is read as the variable assignment g except that the variable α is assigned the item 5 from the domain

Variant variable assignments

- Let's introduce the notion of a variant variable assignment:

Definition (variant variable assignment)

Let α be a variable and u be an item in the domain $u \in \mathcal{D}$ of a model, a variant variable assignment g_{u}^{α} is a variable assignment g for a model \mathcal{M} except that it assigns u to α.

Reading variant variable assignment notation

1. g_{u}^{α} is read as the variable assignment g except that the variable α is assigned the item u from the domain
2. g_{5}^{α} is read as the variable assignment g except that the variable α is assigned the item 5 from the domain

Variant variable assignments

- Let's introduce the notion of a variant variable assignment:

Definition (variant variable assignment)

Let α be a variable and u be an item in the domain $u \in \mathcal{D}$ of a model, a variant variable assignment g_{u}^{α} is a variable assignment g for a model \mathcal{M} except that it assigns u to α.

Reading variant variable assignment notation

1. g_{u}^{α} is read as the variable assignment g except that the variable α is assigned the item u from the domain
2. g_{5}^{α} is read as the variable assignment g except that the variable α is assigned the item 5 from the domain

Example 1 of Variant Variable assignment

Example (Illustration of a variant variable assignment)

Suppose there is a variable assignment g where $g(x)=u_{1}, g(y)=u_{2}, g(z)=u_{3}$.
Now let's consider one variant variable assignment: $g_{u_{1}}^{y}$.

$$
\begin{aligned}
& g: g(x)=u_{1}, g(y)=u_{2}, g(z)=u_{3} \\
& g_{u_{1}}^{y}: g_{u_{1}}^{y}(x)=u_{1}, g_{u_{1}}^{y}(y)=u_{1}, g_{u_{1}}^{y}(z)=u_{3}
\end{aligned}
$$

Notice that the only difference between g and $g_{u_{1}}^{y}$ is that $g_{u_{1}}^{y}$ assigns the variable y to u_{1} instead of u_{2}.

Example 2 of Variant Variable assignment

A variable assignment and a variant variable assignment might be identical. Example (Illustration of a variant variable assignment)

Suppose there is a variable assignment g where $g(x)$
Now consider the variant variable assignment $g_{i n}^{x}$

Notice that there is no difference between the variable assignment g and the variant variable assionment σ^{x}

Example 2 of Variant Variable assignment

A variable assignment and a variant variable assignment might be identical.

Example (Illustration of a variant variable assignment)

Suppose there is a variable assignment g where $g(x)=u_{1}, g(y)=u_{2}, g(z)=u_{3}$.
Now consider the variant variable assignment $g_{u_{1}}^{x}$:

- $g: g(x)=u_{1}, g(y)=u_{2}, g(z)=u_{3}$
- $g_{u_{1}}^{x}: g_{u_{1}}^{x}(x)=u_{1}, g_{u_{1}}^{x}(y)=u_{2}, g_{u_{1}}^{x}(z)=u_{3}$

Notice that there is no difference between the variable assignment g and the variant variable assignment $g_{u_{1}}^{X}$.

Variant Variable Assignments

Question

How can variant variable assignments be used to define a new valuation function that will deal with the problem involving quantified wffs?

```
- v(\existsx)}\mp@subsup{)}{M,g}{}Px=T if
    - there is at least one item }u\inD\mathrm{ such that }\mp@subsup{v}{Mgx}{}(Px)=
    - for every item u\in\mathcal{D},\mp@subsup{v}{\mathcal{Mg}}{u}
```


Variant Variable Assignments

Question

How can variant variable assignments be used to define a new valuation function that will deal with the problem involving quantified wffs?

- $v(\exists x)_{\mathcal{M}, g} P x=T$ iff
- there is at least one item $u \in \mathcal{D}$ such that $v_{\mathcal{M g x}_{x}}(P x)=T$
- for every item $u \in \mathcal{D}, \operatorname{v}_{\mathcal{M g}_{\bar{u}}^{x}}(P x)=T$

Variant Variable Assignments

Question

How can variant variable assignments be used to define a new valuation function that will deal with the problem involving quantified wffs?

- $v(\exists x)_{\mathcal{M}, g} P x=T$ iff
- there is at least one item $u \in \mathcal{D}$ such that $v_{\mathcal{M g}_{u}^{x}}(P x)=T$
- for every item $u \in \mathcal{D}, v_{\mathcal{M} g_{u}^{x}}(P x)=T$

Variant Variable Assignments

Question

How can variant variable assignments be used to define a new valuation function that will deal with the problem involving quantified wffs?

- $v(\exists x)_{\mathcal{M}, g} P x=T$ iff
- there is at least one item $u \in \mathcal{D}$ such that $v_{\mathcal{M g}_{u}^{x}}(P x)=T$
- $v(\forall x)_{\mathcal{M}, g} P x=T$ iff
- for every item $u \in \mathcal{D}, \operatorname{v}_{\mathcal{M g}_{\hat{u}}}(P x)=T$

Variant Variable Assignments

Question

How can variant variable assignments be used to define a new valuation function that will deal with the problem involving quantified wffs?

- $v(\exists x)_{\mathcal{M}, g} P x=T$ iff
- there is at least one item $u \in \mathcal{D}$ such that $v_{\mathcal{M g}_{u}^{x}}(P x)=T$
- $v(\forall x)_{\mathcal{M}, g} P x=T$ iff
- for every item $u \in \mathcal{D}, \boldsymbol{v}_{\mathcal{M g}_{u}^{x}}(P x)=T$

Definition of a valuation function using variant variable assignments

An RL-valuation - for a model \mathcal{M} and variable assignment g - is a function that assigns to each RL-wff a truth value (T or F) using the following rules (let P be any n-place predicate, t_{1}, \ldots, t_{n} be a series of terms (not necessarily distinct), α be any variable, ϕ, ψ any RL-wff):

Definition of a valuation function using variant variable assignments

An RL-valuation - for a model \mathcal{M} and variable assignment g — is a function that assigns to each RL-wff a truth value (T or F) using the following rules (let P be any n-place predicate, t_{1}, \ldots, t_{n} be a series of terms (not necessarily distinct), α be any variable, ϕ, ψ any RL-wff):

1. $v_{\mathcal{M}, g}\left(P t_{1} \ldots t_{n}\right)=T$ iff $\left\langle\left[t_{1}\right]_{\mathcal{M}, g}, \ldots,\left[t_{n}\right]_{\mathcal{M}, g}\right\rangle \in \mathscr{I}(P)$
2. $v_{\mathcal{M}, g}(\neg(\phi))=T$ iff $v_{\mathcal{M}, g}(\phi)=F$
3. $v_{\mathcal{M}, g}(\phi \wedge \psi)=T$ iff $v_{\mathcal{M}, g}(\phi)=T$ and $v_{\mathcal{M}, g}(\psi)=T$
4. $v_{\mathcal{M}, g}(\phi \vee \psi)=T$ iff $v_{\mathcal{M}, g}(\phi)=T$ or $v_{\mathcal{M}, g}(\psi)=T$
5. $v_{\mathcal{M}, g}(\phi \rightarrow \psi)=T$ iff $v_{\mathcal{M}, g}(\phi)=F$ or $v_{\mathcal{M}, g}(\psi)=T$
6. $v_{\mathcal{M}, g}(\forall \alpha) \phi=T$ iff for every $u \in \mathcal{D}, v_{\mathcal{M}, g_{u}^{\alpha}}(\phi)=T$.
7. $v_{\mathcal{M}, g}(\exists \alpha) \phi=T$ iff for at least one $u \in \mathcal{D}, v_{\mathcal{M}, g_{u}^{\alpha}}(\phi)=T$.

Example 1

Take the model $\mathcal{M}=\langle\mathcal{D}, \mathscr{I}\rangle$, where $\mathcal{D}=\{1,2,3,4,5\}, \mathscr{I}(N)=\{1,2,3,4,5\}$, $\mathscr{I}(O)=\{2,4\}, \mathscr{I}(a)=1, \mathscr{I}(b)=2, \mathscr{I}(c)=3, g(x)=1, g(y)=2$, and all other variables are assigned 3 .

- $v_{\mathcal{M}, g}(\exists x) O x=T$ since there is one $u \in \mathcal{D}$ such that $v_{\mathcal{M}, g_{u}^{x}}(O x)=T$
- NOTE: it is not the case that $v_{M_{g}}(O x)=T$ since the variable assignment g assigns 1 to x
- HOWEVER: it is the case that there is a variant variable assignment g_{u}^{x} where $(\exists x) O x$ would come out as true
- Example: consider the variant variable assignment g_{2}^{x}, viz., where g assigns the variable x to $2 \in \mathcal{D}$. On this variant variable assignment, $(\exists x) O x$ is true. So $v_{M, \xi_{2}^{x}}(O x)=T$. And so, $v_{M, F}(\exists x) O x=T$

Example 1

Take the model $\mathcal{M}=\langle\mathcal{D}, \mathscr{I}\rangle$, where $\mathcal{D}=\{1,2,3,4,5\}, \mathscr{I}(N)=\{1,2,3,4,5\}$, $\mathscr{I}(O)=\{2,4\}, \mathscr{I}(a)=1, \mathscr{I}(b)=2, \mathscr{I}(c)=3, g(x)=1, g(y)=2$, and all other variables are assigned 3 .

- $v(\exists x) O x=$?
- $v_{\mathcal{M}, g}(\exists x) O x=T$ since there is one $u \in \mathcal{D}$ such that $v_{\mathcal{M}, g_{x}}(O x)=T$
- NOTE: it is not the case that $v_{\mathcal{M}, g}(O x)=T$ since the variable assignment g assigns 1 to x
- HOWEVER: it is the case that there is a variant variable assignment g_{u}^{x} where ($\exists x)$ Ox would come out as true
- Example: consider the variant variable assignment g_{2}^{x}, viz., where g assigns the variable x to $2 \in \mathcal{D}$. On this variant variable assignment, $(\exists x) O x$ is true. So $v_{\mathcal{M}, g_{2}^{x}}(O x)=T$. And so, $v_{\mathcal{M}, g}(\exists x) O x=T$

Example 1

Take the model $\mathcal{M}=\langle\mathcal{D}, \mathscr{I}\rangle$, where $\mathcal{D}=\{1,2,3,4,5\}, \mathscr{I}(N)=\{1,2,3,4,5\}$, $\mathscr{I}(O)=\{2,4\}, \mathscr{I}(a)=1, \mathscr{I}(b)=2, \mathscr{I}(c)=3, g(x)=1, g(y)=2$, and all other variables are assigned 3 .

- $v(\exists x) O x=$?
- $v_{\mathcal{M}, g}(\exists x) O x=T$ since there is one $u \in \mathcal{D}$ such that $v_{\mathcal{M}, g_{u}^{x}}(O x)=T$
- NOTE: it is not the case that $v_{\mathcal{M}, g}(O x)=T$ since the variable assignment g assigns 1 to x
- HOWEVER: it is the case that there is a variant variable assignment g_{u}^{x} where ($\exists x)$ Ox would come out as true
- Example: consider the variant variable assignment g_{2}^{x}, viz., where g assigns the variable x to $2 \in \mathcal{D}$. On this variant variable assignment, $(\exists x) O x$ is true. So, $v_{\mathcal{M}, g_{2}^{x}}(O x)=T$. And so, $v_{\mathcal{M}, g}(\exists x) O x=T$

Example 1

Take the model $\mathcal{M}=\langle\mathcal{D}, \mathscr{I}\rangle$, where $\mathcal{D}=\{1,2,3,4,5\}, \mathscr{I}(N)=\{1,2,3,4,5\}$, $\mathscr{I}(O)=\{2,4\}, \mathscr{I}(a)=1, \mathscr{I}(b)=2, \mathscr{I}(c)=3, g(x)=1, g(y)=2$, and all other variables are assigned 3 .

- $v(\exists x) O x=$?
- $v_{\mathcal{M}, g}(\exists x) O x=T$ since there is one $u \in \mathcal{D}$ such that $v_{\mathcal{M}, g_{u}^{x}}(O x)=T$
- NOTE: it is not the case that $v_{\mathcal{M}, g}(O x)=T$ since the variable assignment g assigns 1 to x
- HOWEVER: it is the case that there is a variant variable assignment g_{u}^{x} where $(\exists x) O x$ would come out as true
- Fxample consider the variant variable assignment g_{2}^{x}, viz., where g assigns the variable x to $2 \in \mathcal{D}$. On this variant variable assignment, $(\exists x) O x$ is true. So, $v_{\mathcal{M}, g_{2}^{x}}(O x)=T$. And so, $v_{\mathcal{M}, g}(\exists x) O x=T$

Example 1

Take the model $\mathcal{M}=\langle\mathcal{D}, \mathscr{I}\rangle$, where $\mathcal{D}=\{1,2,3,4,5\}, \mathscr{I}(N)=\{1,2,3,4,5\}$, $\mathscr{I}(O)=\{2,4\}, \mathscr{I}(a)=1, \mathscr{I}(b)=2, \mathscr{I}(c)=3, g(x)=1, g(y)=2$, and all other variables are assigned 3 .

- $v(\exists x) O x=$?
- $v_{\mathcal{M}, g}(\exists x) O x=T$ since there is one $u \in \mathcal{D}$ such that $v_{\mathcal{M}, g_{u}^{x}}(O x)=T$
- NOTE: it is not the case that $v_{\mathcal{M}, g}(O x)=T$ since the variable assignment g assigns 1 to x
- HOWEVER: it is the case that there is a variant variable assignment g_{u}^{x} where $(\exists x) O x$ would come out as true
- Example: consider the variant variable assignment g_{2}^{\times}, viz., where g assigns the variable x to $2 \in \mathcal{D}$. On this variant variable assignment, $(\exists x) O x$ is true. So, $v_{\mathcal{M}, g_{2}^{x}}(O x)=T$. And so, $v_{\mathcal{M}, g}(\exists x) O x=T$

Example 1

Take the model $\mathcal{M}=\langle\mathcal{D}, \mathscr{I}\rangle$, where $\mathcal{D}=\{1,2,3,4,5\}, \mathscr{I}(N)=\{1,2,3,4,5\}$, $\mathscr{I}(O)=\{2,4\}, \mathscr{I}(a)=1, \mathscr{I}(b)=2, \mathscr{I}(c)=3, g(x)=1, g(y)=2$, and all other variables are assigned 3 .

- $v(\exists x) O x=$?
- $v_{\mathcal{M}, g}(\exists x) O x=T$ since there is one $u \in \mathcal{D}$ such that $v_{\mathcal{M}, g_{u}^{x}}(O x)=T$
- NOTE: it is not the case that $v_{\mathcal{M}, g}(O x)=T$ since the variable assignment g assigns 1 to x
- HOWEVER: it is the case that there is a variant variable assignment g_{u}^{x} where $(\exists x) O x$ would come out as true
- Example: consider the variant variable assignment g_{2}^{x}, viz., where g assigns the variable x to $2 \in \mathcal{D}$. On this variant variable assignment, $(\exists x) O x$ is true. So, $v_{\mathcal{M}, g_{2}^{x}}(O x)=T$. And so, $v_{\mathcal{M}, g}(\exists x) O x=T$

Example 2

Take the model $\mathcal{M}=\langle\mathcal{D}, \mathscr{I}\rangle$, where $\mathcal{D}=\{1,2,3,4,5\}, \mathscr{I}(N)=\{1,2,3,4,5\}$, $\mathscr{I}(O)=\{2,4\}, \mathscr{I}(a)=1, \mathscr{I}(b)=2, \mathscr{I}(c)=3, g(x)=1, g(y)=2$, and all other variables are assigned 3 .

1. $v_{\mathcal{M}, g}(\forall x) N x=$?
2. $v_{\mathcal{M}, g}(\forall x) N_{x}=T$ since for every $u \in \mathcal{D}$, it is the case that that $v_{\mathcal{M}, \mathrm{g}_{\mathrm{u}}}(N x)=T$ 3. $\mathcal{v}_{\mathcal{M}, g_{1}^{x}}(N x)=T, \mathcal{V}_{\mathcal{M}, g_{2}^{x}}(N x)=T, \ldots, v_{\mathcal{M}, g_{5}^{x}}(N x)=T$.

Example 2

Take the model $\mathcal{M}=\langle\mathcal{D}, \mathscr{I}\rangle$, where $\mathcal{D}=\{1,2,3,4,5\}, \mathscr{I}(N)=\{1,2,3,4,5\}$, $\mathscr{I}(O)=\{2,4\}, \mathscr{I}(a)=1, \mathscr{I}(b)=2, \mathscr{I}(c)=3, g(x)=1, g(y)=2$, and all other variables are assigned 3 .

1. $v_{\mathcal{M}, g}(\forall x) N x=$?
2. $v_{\mathcal{M}, g}(\forall x) N_{x}=T$ since for every $u \in \mathcal{D}$, it is the case that that $v_{\mathcal{M}, g \underset{u}{c}}\left(N_{x}\right)=T$ 3. $\mathcal{v}_{\mathcal{M}, \mathrm{g}_{1}^{x}}(N x)=T, \mathcal{v}_{\mathcal{M}, \mathrm{g}_{2}^{x}}(N x)=T, \ldots, v_{\mathcal{M}, \mathrm{g}_{5}^{\mathrm{x}}}(N x)=T$

Example 2

Take the model $\mathcal{M}=\langle\mathcal{D}, \mathscr{I}\rangle$, where $\mathcal{D}=\{1,2,3,4,5\}, \mathscr{I}(N)=\{1,2,3,4,5\}$, $\mathscr{I}(O)=\{2,4\}, \mathscr{I}(a)=1, \mathscr{I}(b)=2, \mathscr{I}(c)=3, g(x)=1, g(y)=2$, and all other variables are assigned 3 .

1. $v_{\mathcal{M}, g}(\forall x) N x=$?
2. $v_{\mathcal{M}, g}(\forall x) N_{x}=T$ since for every $u \in \mathcal{D}$, it is the case that that $v_{\mathcal{M}, \mathrm{g}_{\underset{u}{x}}(N x)=T}$
3. $v_{\mathcal{M}, g_{1}^{x}}(N x)=T, v_{\mathcal{M}, g_{2}^{x}}(N x)=T, \ldots, v_{\mathcal{M}, g_{5}^{x}}^{x}(N x)=T$.

Example 2

Take the model $\mathcal{M}=\langle\mathcal{D}, \mathscr{I}\rangle$, where $\mathcal{D}=\{1,2,3,4,5\}, \mathscr{I}(N)=\{1,2,3,4,5\}$, $\mathscr{I}(O)=\{2,4\}, \mathscr{I}(a)=1, \mathscr{I}(b)=2, \mathscr{I}(c)=3, g(x)=1, g(y)=2$, and all other variables are assigned 3 .

1. $v_{\mathcal{M}, g}(\forall x) N x=$?
2. $v_{\mathcal{M}, g}(\forall x) N x=T$ since for every $u \in \mathcal{D}$, it is the case that that $v_{\mathcal{M}, g_{u}^{x}}(N x)=T$
3. $v_{\mathcal{M}, g_{1}^{x}}(N x)=T, v_{\mathcal{M}, g_{2}^{x}}(N x)=T, \ldots, v_{\mathcal{M}, g_{5}^{x}}(N x)=T$.

Solution to Problem 2

- Recall that the problem with unpacking the truth value of $(\exists x) P x$ in terms of $P a$ and $P b$ was that there was no guarantee that every item in the domain was named
- Recall also that the problem with unpacking the truth value of $(\exists x) P x$ in terms of P_{x} relative to a variable assignment g was that there are cases where $v(\exists x) P x=T$ but $v_{g}(P x)=F$
- What we needed was a way of referring not simply to a single variable assignment, but a number of different variable assignments
- So, we introduced the notion of a variant variable assignment and defined our valuation function using this way of referring to additional variable assignment

Solution to Problem 2

- Recall that the problem with unpacking the truth value of $(\exists x) P x$ in terms of $P a$ and $P b$ was that there was no guarantee that every item in the domain was named
- Recall also that the problem with unpacking the truth value of $(\exists x) P x$ in terms of P_{x} relative to a variable assignment g was that there are cases where $v(\exists x) P x=T$ but $v_{g}(P x)=F$
- What we needed was a way of referring not simply to a single variable assignment, but a number of different variable assignments
- So, we introduced the notion of a variant variahle assignment and defined our valuation function using this way of referring to additional variable assignment

Solution to Problem 2

- Recall that the problem with unpacking the truth value of $(\exists x) P x$ in terms of $P a$ and $P b$ was that there was no guarantee that every item in the domain was named
- Recall also that the problem with unpacking the truth value of $(\exists x) P x$ in terms of P_{x} relative to a variable assignment g was that there are cases where $v(\exists x) P x=T$ but $v_{g}(P x)=F$
- What we needed was a way of referring not simply to a single variable assignment, but a number of different variable assignments
- So, we introduced the notion of a variant variable assignment and defined our valuation function using this way of referring to additional variable assignment

Solution to Problem 2

- Recall that the problem with unpacking the truth value of $(\exists x) P x$ in terms of $P a$ and $P b$ was that there was no guarantee that every item in the domain was named
- Recall also that the problem with unpacking the truth value of $(\exists x) P x$ in terms of P_{x} relative to a variable assignment g was that there are cases where $v(\exists x) P x=T$ but $v_{g}(P x)=F$
- What we needed was a way of referring not simply to a single variable assignment, but a number of different variable assignments
- So, we introduced the notion of a variant variable assignment and defined our valuation function using this way of referring to additional variable assignment

But wait!

What about our cat example? What about Snickers?

Something is a cat

Suppose $\mathcal{D}:\{$ Jon, Snickers $\}, \mathscr{I}(C)=\{$ Snickers $\}, g(x)=$ Jon. Notice

Something is a cat

Suppose \mathcal{D} : $\{$ Jon, Snickers $\}, \mathscr{I}(C)=\{$ Snickers $\}, g(x)=$ Jon. Notice $v(\exists x)_{\mathcal{M}, g} C x=T$ since $v_{\mathcal{M}, g_{\text {Snickers }}^{\times}} C x=T$ since there is a cat but
$[x]_{\mathcal{M}, g_{\text {Snickers }}^{㐅}} \in \mathscr{I}(C)$

Summary: Problem 1

We saw that using names to unpack the valuation function had two potential problems:
Problem 1: it left open wffs undefined. We solved this by relativizing the valuation
function to variable assignments

- Allows us to specify the truth value of wffs like $I x x$
- tighter relation between syntax and semantics: if a formula is a wff, then we have a way of assigning it a truth value

Summary: Problem 1

We saw that using names to unpack the valuation function had two potential problems:
Problem 1: it left open wffs undefined. We solved this by relativizing the valuation function to variable assignments

- Allows us to specify the truth value of wffs like Ixx
- tighter relation between syntax and semantics: if a formula is a wff, then we have a way of assigning it a truth value

Summary: Problem 1

We saw that using names to unpack the valuation function had two potential problems:
Problem 1: it left open wffs undefined. We solved this by relativizing the valuation function to variable assignments

- Allows us to specify the truth value of wffs like $I x x$
- tighter relation between syntax and semantics: if a formula is a wff, then we have a way of assigning it a truth value

Summary: Problem 1

We saw that using names to unpack the valuation function had two potential problems:
Problem 1: it left open wffs undefined. We solved this by relativizing the valuation function to variable assignments

- Allows us to specify the truth value of wffs like $I x x$
- tighter relation between syntax and semantics: if a formula is a wff, then we have a way of assigning it a truth value

Summary: Problem 2

Problem 2: it assumes that there is an RL-name for every item in the domain.
solved this by relativizing the valuation function to variable assignments and making
the truth of quantified wffs depend upon variant variable assignments

- Not a problem if every item in the domain isn't named
- variables can ensure that each item is referenced in some way
- Treats the truth value of wffs in a pretty compositional way: $(\exists x) P x$ is determined by the existential quantifier and $P x$, rather than say a wff $P a \vee P b, \ldots P n$?

Summary: Problem 2

Problem 2: it assumes that there is an RL-name for every item in the domain. We solved this by relativizing the valuation function to variable assignments and making the truth of quantified wffs depend upon variant variable assignments

- Not a problem if every item in the domain isn't named
- variables can ensure that each item is referenced in some way
- Treats the truth value of wffs in a pretty compositional way: ($\urcorner \mathrm{X}) P \mathrm{P}$ is determined by the existential quantifier and $P x$, rather than say a wff $P a \vee P b, \ldots P n$?

Summary: Problem 2

Problem 2: it assumes that there is an RL-name for every item in the domain. We solved this by relativizing the valuation function to variable assignments and making the truth of quantified wffs depend upon variant variable assignments

- Not a problem if every item in the domain isn't named
- variables can ensure that each item is referenced in some way
- Treats the truth value of wffs in a pretty compositional way: $(\exists x) P x$ is determined hy the existential quantifier and $P x$, rather than say a wff $P_{a} \backslash P h \quad P_{n}$?

Summary: Problem 2

Problem 2: it assumes that there is an RL-name for every item in the domain. We solved this by relativizing the valuation function to variable assignments and making the truth of quantified wffs depend upon variant variable assignments

- Not a problem if every item in the domain isn't named
- variables can ensure that each item is referenced in some way
- Treats the truth value of wffs in a pretty compositional way: $(\exists x) P x$ is determined by the existential quantifier and $P x$, rather than say a wff $P a \vee P b, \ldots P n$?

Summary: Problem 2

Problem 2: it assumes that there is an RL-name for every item in the domain. We solved this by relativizing the valuation function to variable assignments and making the truth of quantified wffs depend upon variant variable assignments

- Not a problem if every item in the domain isn't named
- variables can ensure that each item is referenced in some way
- Treats the truth value of wffs in a pretty compositional way: $(\exists x) P x$ is determined by the existential quantifier and $P x$, rather than say a wff $P a \vee P b, \ldots P n$?

Resources

- Gamut, L.T.F. 1991. Language, Logic, and Meaning: Volume I Introduction to Logic. Chicago: The University of Chicago Press.

Resources

- Bostock, David. 1997. Intermediate Logic. Oxford: Oxford University Press.

Resources

- Sider, Theodore. 2010. Logic for Philosophy. Oxford: Oxford University Press.

