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1.1 MPL Symbols

MPL is an extension of PL in that it adds two one-place operators: ♦ (the diamond) and � (the box). The
symbols of MPL consist of the following::

1. Uppercase Roman (unbolded) lettersA1, A2, B,C, . . . , Z with or without subscripted integers for propo-
sitional letters.

2. Truth-functional operators (¬,∧,∨,→,↔)
3. Parentheses, braces, and brackets to indicate the scope of operators.
4. Two one-place modal operators (♦ and �).

Exercise 1: State whether the following are symbols in MPL

1. ♦
2. �
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6 MPL Syntax

3. P
4. Q
5. ¬
6. 7
7. &

1.2 MPL Syntax

The syntax of MPL is identical to PL except for well-formed formulas (wff) containing the modal operators:
♦ and �. As with PL and RL, the syntax for MPL is expressed using a set of formation rules. An MPL-wff
is a formula constructed using the following formation rules:

1. Single propositional letters A,B,C, . . . , Z with and without numerical subscripts are wffs.
2. If φ is a wff, then so is ¬(φ) is a wff.
3. If φ and ψ are wffs, then so are φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), (φ↔ ψ).
4. If φ is a wff, then so are ♦(φ) and �(φ).
5. Nothing else is a wff except in virtue of (1)–(4).

To improve readability, parentheses are dropped when there is no confusion about the scope of an operator
or in cases where the monadic operators are iterated. Thus, rather than �(♦(φ)), we write �♦φ. In addition,
rather than ¬(♦(φ)), we write ¬♦φ.

All of these are MPL wffs:

1. P
2. P ∧Q
3. ¬P
4. ♦P
5. ♦♦P
6. ¬♦P
7. ¬♦¬♦P
8. �P
9. ��P

10. ¬�P
11. ¬�¬�P
12. �♦P
13. �(♦P → P )

All of these are not MPL wffs:

1. PP
2. ∧Q
3. P¬
4. P♦
5. ♦P♦
6. ♦♦
7. P♦Q

Exercise 2: Use the formation rules to show that the following are MPL-wffs

1. �P
2. ¬�P
3. P ↔ �Q
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4. ♦�Q
5. �♦P
6. ♦�P ∨�Q
7. ��♦Q
8. �¬♦Q
9. ♦♦�¬Q

10. (�P → ♦¬Q) ∨ ♦S

1.3 MPL Semantics

The semantics of MPL are determined using a model M .

Definition 1 MPL Model An MPL model is a ordered triple 〈W,R,I 〉 consisting of the following:

1. W, a non-empty set of objects (or “worlds”). That is, w1, w2, . . . wn ∈W .
2. R, a binary relation overW. That is, R ⊆W ×W .
3. I , a 2-place function that takes pairs of propositional letters and worlds (e.g. P,w1) as input and outputs

a truth value T or F . That is, I : (P ×W ) 7→ {F, T} where P is the set of propositional letters.

The MPL model is a three-part structure, but it also can be thought of in terms of a two-part structure: 〈F ,I 〉
where F is the model’s frame and I is an interpretation function. The frame F is a tuple 〈W,R〉 consisting
of a set of possible worlds W and a relationR onW called the accessibility relation. A MPL-model can be
divided into two parts: the frame F of the model and the interpretation function I . The frame of a model
M is the ordered pairW and R.

1.3.1 Possible Worlds

The part of a model is a non-empty setW. This set is sometimes said to consist of “possible world”, designated
by w with subscripted numbers or simply numbers. That is, the elements of W are represented using lower
case w with positive subscripted integers. For example, we can specify that the set of worlds W consists of
three worlds w1, w2, w3 by writing w1, w2, w3 ∈ W.

The definition, nature, and reality of possible worlds is the subject of philosophical dispute. Some people
think that there is no such thing as possible worlds, other people think they are real but abstract, while still
others think they are real and just as real as this world. We will avoid these metaphysical issues here and
simply define a “possible world” (represented by w) to be a complete (maximally inclusive) scenario, viz., it
is a fully specific way in which a world can be. In other words, these worlds are defined in such a way that
for any proposition p, that proposition p is determinate enough for p to be either true or false.

1.3.2 Interpretation Function

The second part of an MPL model is the interpretation function. The interpretation function I is a 2-place
function that takes propositional letters at worlds in W as input and delivers a truth value T, F as output.
The I behaves the same as the PL-interpretation function except that it assigns truth values to propositional
letters at worlds. Thus, I does not merely take A,B,C, . . . Z as input and deliver truth values as output. It
instead takes A at w1 and A at w2 and B at w1, and so on and delivers truth values as output.

We can specify the interpretation of a proposition at a possible world in at least three ways. First, we can
simply write out the function. For example, if P is a propositional letter, we can specify the worlds at which
it is true and false as follows:
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• I (P,w1) = T
• I (P,w2) = F
• I (P,w3) = T

Second, we can also list the worlds and then specify whether P is true or false. If P is true, then we can
write P . If P is false, then we can write ¬P . Here is an example mirroring the above interpretation of P at
worlds w1, w2, w3:

• w1 : P
• w2 : ¬P
• w3 : P

Finally, it is common to represent the interpretation of propositions using a graph (or diagram).

P

w1

¬P

w2

P

w3

Let’s look at another example. Suppose we had two possible worlds w1 and w2 and two propositional letters
p, q. We could specify the truth values of p and q at each world. We would do this by writing p if v(p) = T
and ¬p if v(p) = F .

p, q

w1

¬p, q

w2

In the above example, p, q are true at w1 while ¬p, q are true at w2. Alternatively, consider the following
example:

p, q

w1

p,¬q

w2

¬p,¬q

w3

In the above example, p, q are true at w1, p,¬q are true at w2, and ¬p,¬q are true at w3.

Exercise 3
Create a graph for the following partial models.

1. w1 : p, q, r, w2 : ¬p,¬q, r,
2. w1 : p, q, r, w2 : p,¬q, r, w3 : p, q,¬r
3. w1 : p, w2 : ¬p, w3 : p, w4 : ¬p

1.3.3 Accessibility Relation

We have discussed the set of worlds W and the interpretation function I . The last part of an MPL model
is the accessibility relation R. The accessibility relation R is a binary relation on W (R ⊆ W ×W ). It thus
consists of a set of ordered pairs 〈w1, w2〉 where both elements are from W . The R is usually referred to as
an “accessibility relation”. When 〈w1, w2〉 ∈ R, w1 is said to “access” w2.

The accessibility relation is specified in one of two ways. First, the ordered pairs may be enumerated
〈w1, w1〉, 〈w1, w2〉 or written as a relation: Rw1w2. The ordered pair 〈w1, w2〉 and relation Rw1w2 both
can be read as saying that w1 accesses w2 (this should not be interpreted as w1 and w2 can access each
other).
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Second, we can represent the accessibility relation using a graph. Let’s suppose a simple accessibility relation
involving two worlds w1 and w2 where w1 accesses w2:

w1 w2

The arrow is used to indicate that w1 accesses w2. Let’s consider another example involving two worlds and
the relation Rw1w2,Rw2w2:

w1 w2

In the above example, w1 accesses w2 and w2 access w2, but notice that w1 does not access w1 nor does w2

access w2.

Finally, let’s consider an example involving three worlds where 〈w1, w2〉, 〈w2, w1〉, 〈w2, w3〉, 〈w2, w2〉, 〈w3, w1〉:

w1

w2

w3

The basic idea behind the accessibility relation is that it expresses what is possible relative to a specific world.
So, if we write Rw1w2, we are saying that “the propositions in world w2 are possible relative to world w1.”

1.3.4 Graphs for Models

Recall that a model consists of a set of possible worlds (W ), an interpretation of propositional letters at those
worlds (I ), and an accessibility relation. The possible worlds, the interpretation of propositional letters at
those worlds, and the accessibility relation can all be represented using one graph. Suppose there are two
worlds w1 and w2. Also suppose the following:

• w1 : p, q
• w2 : ¬p, q
• 〈w1, w1〉, 〈w2, w2〉, 〈w1, w2〉

With this model in place, we can represent the entirety using a graph:

p, q

w1

¬p, q

w2

Exercise 4
Create a graph for the following models.

1. w1 : p, q, w2 : p,¬q; 〈w1, w1〉
2. w1 : p, q, w2 : p,¬q; 〈w1, w1〉, 〈w2, w2〉
3. w1 : p,¬q, r, w2 : p,¬q, r; 〈w1, w1〉, 〈w1, w2〉, 〈w2, w2〉
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1.3.5 Valuation of wffs relative to models

In PL, a valuation function takes pairs of truth values and worlds as input and delivers a truth value as output.
For convenience, the valuation function is often said to take MPL-wffs and worlds as input and deliver a truth
value as output. That is, vMPL : (φMPL ×W ) 7→ {F, T}, where φMPL is the set of MPL-wffs.

Definition 2 Valuation Function When M=〈W,R,I 〉, a valuation of VM is a two-placed function that as-
signs either T or F (not both) to every wff relative to a world in W in the following manner (where A is any
propositional letter while φ and ψ refer to any MPL-wff:

1. VM (A,w) = I (A,w).
2. VM (¬(φ), w) = T iff VM (φ,w) = F .
3. VM ((φ ∧ ψ), w) = T iff VM(φ,w) = T and VM(ψ,w) = T .
4. VM ((φ ∨ ψ), w) = T iff VM(φ,w) = T or VM(ψ,w) = T .
5. VM ((φ→ ψ), w) = T iff VM(φ,w) = F or VM(ψ,w) = T .
6. VM ((φ↔ ψ), w) = T iff VM(φ,w) = T and VM(ψ,w) = T or VM(φ,w) = F and VM(ψ,w) = F .
7. VM (�(φ), w) = T iff for each u ∈ W, if Rwu, then VM (φ, u) = T .
8. VM(♦(φ), w) = T iff for at least one u ∈ W, Rwu and VM(φ, u) = T .

To simplify, we exclude subscripting the model to the valuation function. Thus, instead of writing vM(φ) = T ,
we simply write v(φ) = T . Using a model and the valuation function, the truth value of every MPL wff can
be determined in a step-by-step fashion.

Example 1.1

Consider: M = 〈W,R,I 〉, W = {w1, w2}, R = {〈w1, w2〉, 〈w2, w1〉}, I (P,w1) = F,I (P,w2) =
F,I (S,w1) = T,I (S,w2) = T . Determine the truth value of v(�P ∧ S,w1).

1 v(P,w2) = F since I (P,w2) = F Rule 1
2 v(S,w1) = T since I (S,w1) = T Rule 1
3 v(�P,w1) = F since R = 〈w1, w2〉 and (P,w2) = F 1, Rule 6
4 v(�P ∧ S,w1) = F since v(�P,w1) = F and v(S,w1) = T 2,3, Rule 2

Rather than using the valuation rules in such a formulaic way, it tends to be easier to determine the truth
value of MPL wffs using graphs. First, let’s consider the same example that we considered above, except let’s
consider it using the graph.

Example 1.2

First, we can represent our model using a graph:

¬P, S

w1

¬P, S

w2

Next, using the above, model, we can determine the truth value of (�P ∧ S,w1). Since S is true at
w1, the right conjunct is true. However, since P is not true at every world accessible to w1, �P is
false. Therefore, v(�P,w1) = F

Let’s consider another example. This time we will determine the truth values of ♦P,w1 and �Q,w2.
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Example 1.3

First, we can represent our model using a graph:

¬P,Q

w1

¬P,Q

w2

For ♦P,w1, we check whether there is at least one world accessible to w1 where P is true. Notice
however, there is no such world so v(♦P,w1) = F . For �Q,w2, we check whether Q is true for every
world accessible to w2. Since w2 is only accessible to itself, and Q is true, v(�Q,w2) = T.

Let’s consider two final cases. This time we will consider ♦P,w1 and �P,w1 but where w1 is not accessible
to any world.

Example 1.4

¬P,Q

w1

¬P,Q

w2

For ♦P,w1, we check whether there is at least one world accessible to w1 where P is true. Notice
however, there is no such world so v(♦P,w1) = F . Notice that �P,w1 is true if and only if for every
world u in W , if w1 accesses u, then P is true in u. But since w1 does not access any world, it follows
that v(�P,w1) = T .

Exercise 5
First, create a graph for the following model. Then use the graph to determine whether the following
wffs are T or F given the model. M = 〈W,R, I〉 where W = w1, w2, R = 〈w1, w2〉, 〈w1, w1〉, and
I (P,w1) = T,I (P,w2) = F,I (S,w1) = T,I (S,w2) = T

1. v(P ∧ S,w2)
2. v(P ∧ S,w1)
3. v(�P,w1)
4. v(♦P,w1)
5. v(♦P,w2)
6. v(�S,w1)
7. v(�S,w2)
8. v(♦�P,w1)
9. v(��P,w1)

10. v(♦�P,w1)

1.4 MPL Translation

The box and diamond of MPL can be translated as “it is necessary” and “it is possible” respectively. Thus,

1. It is necessary that P.
2. P must be the case.
3. P has to be the case.

(1)-(3) all translated as �P .
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4. It is possible that P
5. It may be P
6. P can be the case

(4)-(6) are translated as ♦P . More complex translations are certainly possible. Consider the following
sentences:

7. It is impossible that P is the case.
8. It is not necessarily the case that P is the case.
9. It must be possible that P is the case.

10. It must be necessary that P is the case.

To say that something is “impossible” is to say that it is “not possible” and thus (7) is translated as ¬♦P .
Individuals will often deny something is necessarily the case, and so the translation of (8) is ¬�P . In the
case of (9), it is asserted that P is not merely possible but is necessarily possible. Thus, (9) is translated as
�♦P . Finally, (10) says that P is not merely necessarily the case but it is necessary that P is necessary. Thus,
(10) is translated as ��P .

In addition, we can translate various English arguments involving possibility and necessity.

11. It is possible that God exists. Therefore, God exists.
12. It is necessary that God exists. Therefore, God exists.
13. It is either possible or not possible that God exists. Therefore, God exists.

(11) can be translated as ♦G |= G, (11) as �G |= G, and (13) as ♦G ∨ ¬♦G |= G.

Finally, it is worth pointing out that some English sentences are ambiguous. For example, consider the sen-
tence “If Tek is a bachelor, then Tek must be unmarried.” On the surface, it looks as though the modal
operator (�) should apply to the proposition “Tek is unmarried.” And so, if we give this sentence a straight-
forward translation, it would look as follows:

14. B → �¬M

However, if this sentence is true, then if Tek is a bachelor at w1, then he is unmarried at every world accessible
to w1. But this cannot be what is expressed by the meaning of this sentence since we can imagine that Tek is
a bachelor at this world, but married at another world accessible to this one. More simply, just because Tek
is a bachelor here and now doesn’t mean that he’s not married at some other world. Rather than affixing the
modal operator to the consequence of the consequent, we capture the meaning of the sentence by giving the
modal operator wide scope. A better translation is the following:

15. �(B → ¬M)

Again, consider a world w1, This says that for every world accessible to w1 is a world such that if Tek is a
bachelor, then Tek is married. This captures what we mean for it says that if you find a world where Tek is a
bachelor, that is also a world where he is unmarried.

Exercise 6
Translate the following sentences into MPL. Use the following key: G: God exists

1. God exists
2. It is possible that God exists
3. It is necessary that God exists
4. God exists if and only if it is possible that God exists
5. If it is possible that God exists, then it is necessary that God exists.
6. It is not impossible that God exists.
7. It must be possible that God exists
8. If it is impossible that God exists, then God must not exist.
9. If God exists, then it must be possible that God exists.
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10. If it is necessary that God exists, then it must be possible that God exists.

Exercise 7
Translate the following arguments into MPL. Use the following key: G: God exists. Use |= to translate
“therefore”.

1. God exists. Therefore it is possible that God exists.
2. It is possible that God exists. Therefore, God exists.
3. If it is possible that God exists, then God exists. It is possible that God exists. Therefore, God

exists.
4. It is impossible that God exists. Therefore, God does not exist.

Exercise 8
Use the model below and the follow key to determine the truth of each sentence. Key: Z: Zombies
eat brains. F: Pegasus flies. Use the following model to determine if the sentence below are true or
false. Evaluate the truth or falsity of each sentence at w1.

¬Z,¬F

w1

¬Z,¬F

w2

¬Z,F

w2

1. It is possible that a Pegasus flies.
2. It is necessarily the case that a Pegasus flies.
3. It is possible that Zombies eat brains.
4. It is possible that Liz exists and zombies eat brains.
5. It is necessarily the case that if a zombie eats brains, then a Pegasus flies.

1.5 Validity

In this section, two different notions of a “valid-wff in MPL” are formulated (also known as a tautology).

1.5.1 Validity in a model

First, a wff φ may be valid in a model.

Definition 3 valid-in-a-model A MPL-wff φ is valid-in-a-model M where M = 〈W,R,I 〉 iff for every w ∈
W, vM (φ,w) = T .

In other words, if a wff φ is true in each of a model’s worlds, then φ is valid in that model. Take the wff
P → P for the modelM1.
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Example 1.5:M1

P,Q

w1

¬P,Q

w2

At w1, since v(P ) = T , it follows that v(P → P ) = T . At
w2, since v(P ) = F , it follows that v(P → P ) = T . Since
v(P → P ) = T at every world in M , it follows that P → P is
valid in the modelM.

Now consider the wff �P → P for the same model M . At w1, since w1Rw2 and since v(P,w2) = F , it follows
that v(�P ) = F and so v(�P → P ) = T . At w2, since w2Rw2 and since v(P,w2) = F , it again follows that
v(�P ) = F and so v(�P → P ) = T . And so, since v(�P → P ) = T at every world in M , it follows that
�P → P is also valid in M .

It is important to note that a wff φ being valid-in-a-model does not mean it is valid in every model for there
are some wffs that are valid in one model but not valid in another model. For example, consider the wff P
for model below.

Example 1.6:M

P

w1

Notice that P is valid in this model.

However, notice that P is not valid in the following model.

Example 1.7:M

P

w1

¬P

w2

Notice that P is not valid.

Let’s illustrate this point with another example. Consider the wff ♦φ ∧ ♦¬φ. That is, it is possible that P is
the case and it is not possible that P is the case. First, consider modelM2:

Example 1.8:M2

P

w1

¬P

w2

Since v(♦P ∧♦¬P ) = T in both w1 and w2, ♦P ∧♦¬P is valid
inM2.

However, consider this same wff in a different modelM3:

Example 1.9:M3

P

w1

P

w2

Note that in w1, v(♦P ∧ ♦¬P ) = F since the right conjunct
is false. That is, there is no world that w1 accesses such that
v(♦¬P ) = T . Thus, ♦P ∧ ♦¬P is invalid inM3.

What is evident from the previous example is that the whether a wff φ is valid-in-a-model depends upon the
interpretation of the model. That is, you can have two different models with the same frame (set of worlds
and accessibility relation), but a wff φ can be valid in one and invalid in another.
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Exercise 9
Determine whether a wff is valid or invalid in the following model:

P,Q

w1

P,¬Q

w2

1. P
2. P ∧Q
3. ♦Q
4. ♦P
5. �P

1.5.2 Validity in a frame

The second notion of validity is validity-in-a-frame. In contrast to validity-in-a-model where validity depends
upon the interpretation of the model, a wff φ is valid-in-a-frame if and only if it is true for any interpretation
in a frame. In other words, if we say that a wff φ is valid-in-a-frame, we are saying that φ is true for any
interpretation in that frame. That is, whether or not it is valid does not depend upon the interpretation of
the model. The notion of validity-in-a-frame is sometimes referred to as being MPL-valid for a system of
logic.

Definition 4 valid-on-a-frame For a frame δ, a MPL-wff φ is frame-valid (where δ is K,T,B, S4, S5) iff φ is
valid in every δ-model.

As we saw above, the wff ♦φ ∧ ♦¬φ is not valid in the frame common to both of their models. However,
consider the wff �φ→ φ..

Example 1.10:M4

w1 w2

With this frame, we see that the wff �P → P is frame-valid.

w1 w2 �P → P,w1 �P → P,w2

P P T T
P ¬P T T
¬P P T T
¬P ¬P T T

And so while the validity of some wffs depend upon the interpretation of the model (e.g. ♦P ∧ ♦¬P ), the
validity of some wffs are independent of the interpretation of the model. It is important to note that the
validity of �φ→ φ depends upon the frame of the model. This wff is not valid in other frames.

Example 1.11:M5

P

w1

¬P

w2

InM4, notice that in w2, v(�P ) = T but v(P ) = F .
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1.5.3 Modal Logic Frames

Thus far, the models and the frames within the models have been formulated in an arbitrary way. There
are, however, properties that characterize a whole class of frames. For example, a set of frames may be
characterized as all those having the property of being reflexive. That is, for all worlds in the frame, those
worlds are accessible to themselves. Or, we might consider the class of frames where the accessibility relation
is transitive. That is, for all worlds in the model, if 〈w1, w2〉 and 〈w2, w3〉, then 〈w1, w3〉.

Some wffs will be valid whenever a model has one of these properties. That is, there are some wffs φ such
that whenever the frame F has a transitive accessibility relation, then φ will be valid-in-the-frame.

One example is that �φ → φ is valid-in-a-frame if and only if R is reflexive. To show this, it is necessary
to show two propositions. First, it is necessary to show that if a model has a reflexive, then �φ → φ is
valid-in-the-frame. Second, one must show that if �φ→ φ is valid-in-a-frame, then R is reflexive.

First, supposeM has a frame F with the accessibility relationR that is reflexive. If�φ is false at every world,
then �φ → φ is true at every world. If �φ is true at a world w, then v(φ) = T at every world wi accessible
to w. But since R is reflexive, then 〈w,w〉. And so, v(φ,wi) = T . Therefore, whenever R is reflexive, then
�φ→ φ is valid-in-the-frame.

Second, if �φ → φ is valid, then the frame is reflexive. This can be shown by demonstrating that a coun-
terexample to �φ→ φ can be constructed whenever the frame is not reflexive. So, suppose a frame F where
the accessibility relation R is not reflexive. In such a frame, suppose v(φ,w) = F , and v(φ,wi) = T for all
other worlds wi. It would thus follow that v(�φ→ φ,w) = F and so would not be valid-in-the-frame.

Example 1.12: �φ→ φ

First example of a non-reflexive frame where
�φ→ φ is not valid.

P

w1

¬P

w2

Second example of a non-reflexive frame where
�φ→ φ is not valid.

¬P

w1

There is thus a relationship between the validity of a wff φ and the properties of a frame F .

1.5.4 Systems of logic

Given the

An S-model for a modal system S is an MPL-model 〈W,R,I 〉 where the accessibility relation R has the
following property or properties:

• K: no requirement on R
• D: R is serial
• T: R is reflexive
• B: R is reflexive and symmetric
• S4: R is reflexive and transitive
• S5: R is reflexive, symmetric, and transitive

Since there is no requirement on R for system K, it is the least restrictive. This system may consist of models
that are serial or not, reflexive or not, transitive or not, and so on. System K is also the weakest modal system
in that anything that is true of system K will also be true of all stronger (more restrictive) modal systems.
For instance, if system K permits transitive and non-transitive accessibility relations and a wff φ is true of
system K, then it will also be true of all the more restrictive systems where the accessibility relation must
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be transitive. But note that the reverse is not the case. That is, a wff φ may be valid in a more restrictive
(stronger) system but not true in system K.

Since K is the weakest of all modal systems, it can be viewed it as foundational. That is, other modal systems
may be built from system K simply by placing restrictions on the accessibility relation.1

K D (serial) T (reflexive)
S4 (transitive)

B (transitive)
S5

Let’s consider some illustrations of these systems. Let’s begin with System K.

Example 1.13: System K

w1

w2

w3

No requirements on R.

More restrictive (stronger) systems can be built up on System K by placing conditions on the accessibility
relation R. In the case of system D, the restriction is that the accessibility relation is serial.

Example 1.14: System D

w1

w2

w3

R is serial: for every world w inW, there is at least one world
wi such that 〈w,wi〉.

System T is built by making R reflexive.

Example 1.15: System T

w1

w2

w3

R is reflexive: for every world w inW, 〈w,w〉.

Note that all reflexive relations are serial but not all serial relations are reflexive. This is because when R is
reflexive, there is at least one world it accesses, namely itself. However, when a relation is serial, it accesses
at least one world, but not necessarily itself.

Next, system B may be constructed by stipulating that R is not only reflexive (and therefore serial) but also
symmetric. In other words, system B is built on system T by adding the symmetric restriction.

1Some authors start the other way around. That is, one might begin with the strongest, most restrictive system, the one that makes
a number of assumptions about R, and then proceed to identify weaker systems by loosening the requirements on R.
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Example 1.16: System B

w1

w2

w3

R is reflexive, serial, and symmetric. The accessibility relation
R is symmetric iff if 〈wi, wj〉, then 〈wj , wi〉.

Next, system S4 is constructed by stipulating that R is not only reflexive (and therefore serial) but also
transitive. In other words, system S4 is also built on system T by adding the transitive restriction.

Example 1.17: System S4

w1

w2

w3
R is reflexive, serial, and transitive. The accessibility relation
R is transitive iff on the condition that 〈wi, wj〉 and 〈wj , wk〉,
then 〈wi, wk〉.

Finally, system S5 is constructed by stipulating that R is not only reflexive (and therefore serial) but also
symmetric and transitive. In other words, system S5 may be thought of as being built on system S4 by adding
the symmetric restriction or system B by adding the transitive restriction.

Example 1.18: System S5

w1

w2

w3

R is reflexive, serial, symmetric, and transitive.

Note that S5 places the most restrictions on the accessibility relation since every world is accessible to itself
and to every other world.

• �φ→ φ is valid whenever R is reflexive.
• �φ→ ��φ is valid whenever R is transitive.
• ♦�φ→ φ is valid whenever R is symmetric.
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1.6 Systems of modal propositional logic

1.7 MPL trees

¬�φ,w
♦¬φ,w MN

¬♦φ,w
�¬φ MN

�φ,w
wRu...
φ, u �K

(a) where u is new to the branch

♦φ,w...
wRu
φ, u

♦K
♦K

(b) where it has been established that wRu

To illustrate, consider the wff �P → P .

1.
2.
3.

¬(�P → P ), w X
�P,w
¬P,w

P
1MN
1MN

The branch cannot be closed. The following countermodel would make �P → P,w false:

¬P

w

Since for every world w, if w accesses that world, then v(P ) = T , it follows that v(�Pw) = T . But since
v(P,w) = F and so v(�P → P,w) = F . And so �P → P is not K-valid.
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