
Handout 6

RL: Symbols, Syntax,
Semantics, Translation

6.1 Predicate Logic: Introduction

The language of PL has three principal strengths:

Strength 1 for any argument that is valid in PL, there is a corresponding valid
argument in English. This means that some of the arguments that we wish
to represent and the reasoning we do in English can be represented in the
more precise language of PL.

Strength 2 There are decision procedures for PL! We can use tables and
trees to mechanically check whether an argument is valid or invalid in
PL, whether a set of propositions are consistent or inconsistent, etc.

Strength 3 There is a proof system (PD) for PL. That is, we have a codified
set of rules that justify various derivations or moves forward in arguments.

The principal weakness of PL is the following:

Weakness 1 It is not expressive enough. That is, there are some valid argu-
ments in English that cannot be represented in PL.

For example, consider the argument in Argument 6.1.

P1 All men are mortal.
P2 Socrates is a man.
C Socrates is mortal.

Argument 6.1 – Argument for Socrates’s mortality

To see why the above argument, when translated into PL, does not express a
valid argument in PL, consider that when we translate a sentence form English
to PL, we translate simple English sentences into single propositional letters.
More complex wffs (e.g. P → Q) express the logical structure between these



6.2 Symbols 79

propositional letters. In short, PL is a logic of complete sentences or proposi-
tions.

The validity of some arguments, however, depends upon the logical relationships
between parts of sentences or propositions. For example, in the above example,
the argument depends upon Socrates belongs to a class of men and how the
class of men form a part of a more expansive class, namely mortals. In order
to capture how parts of propositions relate to each other, we can devise a more
expressive logical language, one that analyzes sentences at the sub-sentential
level. This is the language of predicate logic (or the logic of relations): RL.

6.2 Symbols

First, we begin with the symbols of RL:

names Lower case letters, a through v with or without
numerical subscripts.

n-place predicates Upper case letters, A through Z with or without
numerical subscripts.

variables Lower case letters, w through z with or without
numerical subscripts.

operators ¬,∧,∨,→,↔
parentheses (, )
quantifiers ∀, ∃

Table 6.1 – Symbols of RL

The above symbols form the vocabulary of RL. While, at this point, these
symbols lack meaning, it is helpful to think of a non-formal analogue for each
of these items.

1. names (a, b, c, d, e) are like proper names in that they refer to specific
objects. For example, George Washington, Hurricane Sandy, Gandhi.

2. n-place predicates (A, B, C, D, E) are like predicate or relational terms
that express properties or relations. For example, is blue, is happy, is
taller than, etc.

3. variables are like placeholders for names of objects, e.g. in “x is happy”
x is a placeholder for some name we could insert to make that statement
true or false.

4. quantifiers are expressions for specifying the quantity of objects that
have some property. For example, “Some”, “All”.

Exercise 1: Determine what kind of symbol the following symbols are:

1. a
2. c
3. g
4. z
5. x



80 RL: Symbols, Syntax, Semantics, Translation

6. →
7. ∀
8. ∃

6.3 RL: Syntax

With the symbols of RL specified, we now turn to the syntax of RL. That is,
the proper way of combining these symbols.

6.3.1 RL: Formation Rules

1. an n-place predicate P followed by n terms (names or variables) is a wff
in RL.

2. If P is a wff in RL, then ¬(P ) is a wff in RL.1
3. If P and Q are wffs in RL, then (P ∧Q), (P ∨Q), (P → Q), and (P ↔ Q)

are wffs in RL.
4. If P is a wff in RL containing a name a and if P (x/a) is what results from

substituting the variable x for every occurrence of a in P , then (∀x)P (x/a)
and (∃x)P (x/a) are wffs in RL (provided that ’P (x/a)’ is not a wff).

5. Nothing else is a wff in RL except that which can be formed by repeated
applications of the above.

In the first rule, reference is made to an “n-place predicate”. Briefly, this is
an uppercase letter with some number n of terms (variables or names) after
it. More intuitively, English predicate and relational terms are the analogues
of n-place predicate terms in that “is tall” is a one-place predicate in that there
is one-place for a subject (or object) to go in order for “is tall” to express a
complete sentence.

• “x is tall” is a 1-place predicate
• “x is taller than y” is a 2-place predicate
• “x is standing between y and z” is a 3-place predicate.

The above rules can be used to determine whether a formula is a wff. For an
example, see Table 6.2.

1 Ra is a wff. Rule (1)
2 Pa is a wff. Rule (1)
3 If Ra is a wff, then ¬(Ra) is a wff. Line 1, rule (ii)
4 If Pa is a wff, then ¬(Pa) is a wff. Line 2, rule (ii)
5 If ¬(Pa) is a wff in RL and P (z/a) is

what results from replacing as with zs,
then (∀z)¬(Pz) is a wff.

Line 4, Rule (iv)

6 If ¬(Ra) is a wff and (∀z)¬(Pz) is a wff,
then (∀z)¬(Pz) ∧ ¬Ra is a wff in RL.

Line 3, 5, rule (iii)

Table 6.2 – Example proving that (∀z)¬Pz ∧ ¬Ra is a wff.

1We will make use of Conventions for parentheses. Thus ¬(Pa) and ¬Pa are both wffs.



6.3 RL: Syntax 81

Some examples will help illustrate which formulas are wffs and which are not
wffs.

Example 1: Some examples of wffs and not wffs

wffs not wffs
Pa aP
Rab aRb
Rxx xRx
¬Pa ∧Rba ¬PaRba
(∀x)Px (∀x)Py
(∃x)(∀y)Rxy ∃x)(∀x)Rxx

Exercise 2: Using the formation rules, show that the following proposi-
tions are wffs in RL, where ‘Pxy’ is a two-place predicate while ‘Rx’ and
‘Zx’ are one-place predicates:

1. Ra ∧ Paa
2. Raa→ Pa
3. (∀x)Pxx
4. (∃x)Px
5. ¬(∃y)Pyy
6. ¬(∀x)Pxx ∧ (∃x)Zx

6.3.2 Scope

The scope of the quantifiers is similar to the scope of the truth-functional op-
erator for negation. That is, it applies to the wff to its immediate right.

(∀x)Px

Without the use of parentheses, ambiguity is possible. Consider the following
formula:

(∀x)Px→ Rx

Does the quantifier (∀) apply to Px alone or does it apply to the complex Px→
Rx? Here scope indicators (open and closed parentheses, braces, and brackets)
are used to indicate the scope of the quantifier. Thus, in the above example,
the universal quantifier applies only to Px while in the following formula, it
operates upon the conditional ‘Px→ Rx’:

(∀x)(Px→ Rx)

Quantifiers can have other quantified formula in their scope. For example, in
the following formula, the existential quantifier has a universally quantified wff
in its scope:

(∃x)(∀y)(Px→ Ry)



82 RL: Symbols, Syntax, Semantics, Translation

Exercise 3: In the following wffs, determine whether the variable is in
the scope of a quantifier. If it is, state which quantifier has it in its scope.

1. (∀x)Px
2. (∃x)Rxy
3. (∀x)Px→ Rxy
4. (∀x)(Px→ Rxy)
5. (∀x)(∃y)Rxy

6.3.3 Free vs. Bound Variables

Quantifiers specify the quantity of specific variables. For example, in the above
formula, ‘(∃x)’ quantifies ‘xs’ while ‘(∀y)’ quantifies ‘ys’. We call a variable that
is quantified by a quantifier that quantifies for that specific variable, a bound
variable. A variable that is not bound is a free variable. We call a variable is in
the scope of a quantifier, irrespective of whether the quantifier quantifies for it,
a scoped variable.

Definition – Bound Variable

A variable is bound if and only if it is in the scope of a quantifier that
quantifies for that variable.

Definition – Free Variable

A variable is free if and only if it is not bound.

Example 1: Consider the following examples

1. (∀x)Fx, x is bound
2. (∀x)Rxy, x is bound, y is free even though it is in in the scope of ∀
3. (∃x)(Rx ∧ Lx), both xs are bound

Definition – Open formula

An open formula is a wff consisting of an n-place predicate P followed by
n terms where one of those terms is a free variable

Definition – Closed formula

A closed formula is a wff consisting of an n-place predicate P followed by
n terms where every term is a name or a bound variable.



6.4 Semantics 83

Exercise 4: Determine whether the formulas below are (i) wffs or not
wffs and (ii) whether the formula is open or closed.

1. Paa
2. Paa→ La
3. (∀x)Pxx
4. (∀x)Pxy
5. (∃x)(∀y)(∀z)(Pxy → Lz)
6. (∃x)(∀y)(∀z)Pxy → Lz

6.4 Semantics

In the semantics of PL, single propositional letters are assigned truth values
(T or F) by an interpretation function while wffs in PL are assigned truth
values by a valuation function. The semantics of RL is more complex in that
the elementary symbols of RL better express parts of propositions or sentences
rather than complete propositions.

A full account of the semantics of RL is outside of the scope of this course.
It would require an excursion into some aspects of set theory, and this is more
than we have time for in this class (if you are interested, email me).

Instead, we will look at the basics. To do this we need three key notions:

1. the domain of discourse
2. an interpretation function
3. a valuation function

The domain of discourse is all of the things we can talk about. You can think
about it as a collection of objects in the world. Often the domain of discourse
is narrower than all of the objects in the world. It will just include a certain
selection of them. We will symbolize the domain of discourse with D and when
we want to specify what objects are in D, we will write D : and then write the
objects we wish to talk about either by indicating a property it has or listing
all of the objects

• D : human beings
• D : David, Liz, Tek, Ryan
• D : a, b, c, d

Definition – Interpretation of RL

An interpretation of RL is a function that

1. assigns objects in D to each name in RL, and
2. assigns a set or collection of objects in D to n-place predicate terms.

In essence, it gives meaning to the names in RL by assigning each name an
object in D and meaning to predicate terms by assigning each predicate term a



84 RL: Symbols, Syntax, Semantics, Translation

set of objects.

We will symbolize the interpretation function as I . For example, if a is a name
in RL, an interpretation function would assign it a single object in D as follows:
I (a) = a. What this says is the name “a” is assigned the object a in the domain
of discourse. More naturally, the name “David” refers to the object David in
the world.

If R is a one-place predicate term, an interpretation function would assign it
a set of objects in D as follows: I (R) := {a, b, c, d}. What this says is the
predicate term “R” is assigned a group of objects a, b, c, d from the domain.
More naturally, the meaning of “x is red” or “red” is just the red things it refers
to in the domain.

When doing with two, or three, or n-place predicate terms, we can make clear
that we are referring to a pair of objects, or triplet, or n-tuple by using angle
brackets. That is, to express the interpretation of “x is taller than y”, we might
write the following: I (T ) := {〈a, b〉, 〈b, c〉, 〈a, c〉}. What this says is that the
“taller than” two-place predicate is interpreted in terms of pairs of things where
the first object in the pair is taller than the other.

With the interpretation function in place, a valuation function can be used to
determine the truth value of various wffs. Here we formulate a list of “valuation”
rules:

Definition – Valuation in RL

Relative to a domain D and interpretation I , a valuation (v or V ) of a
wff in RL is a function that assigns one and only one truth value (T or
F) to each closed wff in RL in such a way (let a be any number of names,
R be any n-place predicate, and P be any wff in RL)

1. v(Rai) = T if and only if (iff) the interpretation of ai is in R. That
is, I (ai) ∈ R.

2. v¬(P ) = T iff v(P ) = F
3. v(P ∧Q) = T iff v(P ) = T and v(Q) = T
4. v(P ∨Q) = T iff either v(P ) = T or v(Q) = T
5. v(P → Q) = T iff either v(P ) = F or v(Q) = T
6. v(P ↔ Q) = T iff either v(P ) = T and v(Q) = T , or v(P ) = F and

v(Q) = F
7. v(∀x)P = T iff for every name a not in P , every a-variant interpre-

tation is such that P (a/x) = T .
8. v(∃x)P = T iff for at least one name a not in P , at least one a-

variant interpretation is such that P (a/x) = T .

Exercise 5: Let D = {a, b, c},I (a) = a,I (b) = b,I (c) = c,I (Hx) =
{a, b, c},I (Lxy) = {〈a, a〉, 〈b, c〉}

1. Ha



6.5 RL: Translation 85

2. (∃x)Hx
3. (∀x)Hx
4. ¬(∀x)Hx
5. (Ha ∧Hb) ∧Hc
6. Lab
7. ¬Laa
8. Lba
9. (∃x)Lxx
10. (∀x)Lxx
11. (∃x)Lxx ∨ (∃x)(∃y)Lxy

6.5 RL: Translation

The formal language of RL can be used to express a fragment of the English
language. The first step to any translation is to construct a translation key. A
translation key does three things:

1. it stipulates the domain of discourse,
2. it interprets all names
3. it interprets all n-place predicates.

Here is an example of a translation key:

• D : Living human beings
• a: Annie
• j: Jon
• f: Frank
• Txy: x is taller than y.
• Hx : x is happy.

Using the above translation key various English sentences can be translated into
RL and closed formula in RL can be translated into English sentences. In RL,
the n-place predicate is placed before (to the left) of the name. In English,
however, typically we utter the name first and then the predicate.

Example 2:

1. Ha: a is H. Annie is happy.
2. Taj: a is taller than b. Annie is taller than Jon.
3. Tjf : Jon is taller than Frank:
4. Tfj: Frank is taller than Jon:
5. ¬(Tjf ∧ Tfj) : It is not both the case that Jon is taller than Frank

and Frank is taller than Jon

The quantifier ‘(∀x)’ can be used to translate pseudo-English expressions like
‘for every x’, ‘for all xs’, ‘for each x’. Likewise ‘(∃x)’ can be used to translate
pseudo-English expressions like ‘for some x’, ‘some xs’, or ‘there exists an x’.



86 RL: Symbols, Syntax, Semantics, Translation

Example 3:

1. (∃x)Hx: Some x is H. At least one x is H. Someone is happy.
2. (∀x)Hx: Every x is H. Everyone is happy.
3. (∀x)(∃y)Txy: For every x, there is some y, such that x is taller than

y. Everyone is taller than someone.

The method for translating English expressions into quantified formula in RL
is an art and so it can help to take a step-by-step method. One way to do this
is to create a bridge translation between wffs in RL and sentences in English,
and then use this bridge translation to translate into more colloquial English.
A bridge translation is a half-way point between English and RL; it’s not quite
English and not quite RL: it’s pseudo-English.

Consider the following translation key

• D : human beings (living or dead)
• Hx: x is happy
• Zx: x is a zombie
• Mx: x is mortal
• Rx: x is murderer
• Wx: x is wrong

Now consider the following predicate wffs:

1. (∀x)Hx
2. (∀x)¬Zx
3. (∀x)(Zx→ Hx)
4. (∀x)(Zx→ ¬Hx)
5. ¬(∀x)(Zx→ Hx)

Let’s consider a translation of (1) by taking one part of the formula at a time.
‘(∀x)’ is translated as ‘For every x’, ‘for all xs’, ‘for each x’. The second part
of (1) says ‘x is H’ or ‘x is happy’. Putting these two parts together we get a
bridge translation.

(1B) For every x, x is happy.

Using this bridge translation, we can more easily translate (1) into colloquial
English:

(1E) Everyone is happy.

Consider a bridge translation of (2):

(2B) For every x, x is not a zombie.

Using (2B) we can render (2) into something more natural. There are two
options.

(2E) Everyone is a not a zombie.



6.5 RL: Translation 87

(2E*) No one is a zombie.

(2E*) is the preferable option as (2E) is ambiguous between two different wffs.
While (2E) can express (2E*), it more naturally expresses the wff: ¬(∀x)Zx,
equivalently (∃x)¬Zx. For consider (2E) as a response to the question: “is
everyone a zombie?”. Responding with (2E) would convey the idea that some
item in the domain of discourse does not have the property of being a zombie,
rather than the stronger claim that no item in the discourse has that property.

Consider a bridge translation of (3):

(3B) For every x, if x is a zombie, then x is happy.

In the case that (3B) does not make it obvious how to render it into English, then
you can try to make (3B) more concrete by expanding the bridge translation as
follows:

(3B+) Choose any object you please in the domain of discourse, if that
object is a zombie, then it will be also be happy.

Rendered into standard English, (3B) and (3B*) reads:

(3E) Every zombie is happy.

Consider a bridge translation of (4):

(4B) For every x, if x is a zombie, then x is not happy.

An additional bridge translation is the following:

(4B*) Choose any object you please in the domain of discourse consisting
of human beings (living or dead), if that object is a zombie, then it will not be
happy.

In colloquial English this is the following:

(4E) No zombies are happy.

Notice that in the case of (5), which is (5) ¬(∀x)(Zx→ Hx), the main operator
is negation. One way to translate this by first translating ‘(∀x)(Zx→ Hx)’:

Every zombie is happy.

Next, translate the negation into English by putting ‘Not’ in front of this ex-
pression. That is, (5) reads:

(5E) Not every zombie is happy.

Finally, consider universally quantified expressions not involving→ as the main
operator

(6) (∀x)(Zx ∧Hx)



88 RL: Symbols, Syntax, Semantics, Translation

(7) (∀x)(Zx ∨Hx)

(8) (∀x)(Zx↔ Hx)

These are

(6E) Everyone is a happy zombie.

(7E) Everyone is either a zombie or happy.

(8E) Everyone is a zombie if and only if they are happy.

Our focus thus far has been on the use of the universal quantifier to translate RL
formula into English. Next, we turn to RL formulas that involve the existential
quantifier. Consider the following predicate wffs:

1. (∃x)Hx
2. (∃x)¬Zx
3. ¬(∃x)Zx
4. (∃x)(Zx ∧Hx)
5. (∃x)Zx ∧ (∃x)Hx

Let’s consider a translation of (1) by taking one part of the formula at a time.
(∃x) is translated as ‘For some x’, ‘there exists an x’, ‘there is at least one x’.
The second part of (1) says ‘x is H’ or ‘x is happy’. Putting thse two parts
together we get a bridge translation. Again, a bridge translation is not quite
English and not quite predicate logic. Here is a bridge translation of (1)

(1B) For some x, x is happy.

(1) says that there is at least one in the object in the D that has the property
of being happy. Using the bridge translation (1B), we can more easily translate
(1) into colloquial English:

(1E) Someone is happy.

Consider (2). Again, we can use a bridge translation,

(2B) For some x, x is not a zombie.

(2B) can be translated into colloquial English as follows:

(2E) Someone is not a zombie.

In the case of (3), note that negation has wide scope. Thus, we can translate
‘(∃x)Zx’ first, and then translate ‘¬(∃x)Zx’. That is, (∃x)Zx translates into
‘Someone is a zombie’, and ¬(∃x)Zx translates as:

(3E) It is not the case that someone is a zombie.

Notice that (2) and (3) say something distinct. (2) says that something exists
that is not a zombie, while all (3) says is that zombies do not exist. Let’s
consider (4) and (5) together. The bridge translations for (4) and (5) are as



6.5 RL: Translation 89

follows:

(4B) For some x, x is a zombie and x is happy.

(5B) For some x, x is a zombie, and for some x, x is happy.

Notice that these two propositions do not say the same thing. (4) asserts that
there is something that is both a zombie and happy, while (5) asserts that there
is a zombie and there is someone who is happy.

Finally, consider some propositions where ∧ is not the main operator.

(6) (∃x)(Zx→ Hx)

(7) (∃x)(Zx ∨Hx)

(8) (∃x)(Zx↔ Hx)

The bridge translations for these are

(6B) For some x, if x is a zombie, then x is happy.

(7B) For some x, x is a zombie or x is happy.

(8B) For some x, x is a zombie if and only if x is happy.

and these can be translated into the following English expressions

(6E) There exists something such that if it is a zombie, then it is happy.

(7E) Someone is either a zombie or happy.

(8E) Something is a zombie if and only if it is happy.

Notice that (6E) is a bit strange. We might exploit the fact that Zx → Hx is
equivalent to ¬Zx ∨Hx and translate (6+) instead:

(6) (∃x)(¬Zx ∨Hx)

(6E+) Something is either happy or not zombie.

Exercise 6: Basic Translation in RL; Key: D: people; Px: x is poor;
Lx: x is lazy; Rx: x is rich

Involving the Universal Quantifier

1. (∀x)Px
2. (∀x)(Px→ Lx)
3. (∀x)Px ∧ (∀x)Lx, what is the difference between #3 and #2?
4. (∀x)(Px ∧ Lx)
5. (∀x)(Px→ ¬Lx)
6. (∀x)(Px ∨ Lx)



90 RL: Symbols, Syntax, Semantics, Translation

Involving the Existential Quantifier:

1. (∃x)Px
2. (∃x)Px ∧ (∃x)Rx
3. (∃x)(Px ∧Rx), what is the difference between #3 and #2?
4. (∃x)(Px ∨Rx)
5. ¬(∃x)(Px ∧Rx)
6. (∃x)¬(Px ∧Rx)

English to RL:

1. All poor people are lazy.
2. All lazy people are poor.
3. Not all lazy people are poor.
4. Some lazy person is not poor.
5. Someone is lazy and someone is poor.
6. If not all lazy people are poor, then not all poor people are lazy.

6.5.1 Translating Wffs with Overlapping Quantifiers

When dealing with wffs with quantifiers whose scope overlaps, does the order of
the quantifiers matter? Consider the following eight wffs (let Lxy express the
two-place English expression “x loves y”)

1. (∀x)(∀y)Lxy
2. (∀y)(∀x)Lxy
3. (∃x)(∃y)Lxy
4. (∃y)(∃x)Lxy
5. (∀x)(∃y)Lxy
6. (∃y)(∀x)Lxy
7. (∀y)(∃y)Lxy
8. (∃y)(∀y)Lxy

While some of these wffs entail others, only the first two pairs of wffs are equiv-
alent. That is, (∀x)(∀y)Lxy is equivalent to (∀y)(∀x)Lxy and (∃x)(∃y)Lxy is
equivalent to (∃y)(∃x)Lxy.

(1) and (2) express the proposition that “everyone loves everyone”. In this
scenario, every item in the domain of discourse loves every item in the domain
of discourse. (3) and (4) express the proposition that “someone loves someone”.
In this scenario, at least one item in the discourse loves at least one other. In
both cases, the order of the quantifiers does not impact the truth or falsity of
the wff.

In contrast, (5)-(8) express different propositions. Let’s characterize each in
terms of a scenario. (5) is what I will call the “crush” scenario. It says that
everyone loves at least one person. It does not say that everyone is loved (there
may be some unloved individuals). What it says instead is that for any indi-
vidual in the domain of discourse, that individual will love at least one other
person. In other words, everyone has a crush on someone, even though not



6.5 RL: Translation 91

everyone is someone’s crush.

(6) is what I will call the “Santa Claus scenario” (I need a better name). It says
that there is at least one object who is loved by everyone. This expression is
similar to (5) in that it implies that everyone loves at least one person. That
is, in (5), every single person loves at least one person, but the loved person
can differ from person to person. For example, in a scenario consisting of Jane,
John, and Sally, (5) would be true if Jane loves John and John loves Jane and
Sally loves herself. In contrast, (6) is true just in the case that there is one
person loved by everyone, e.g. John loves Jane, Sally loves Jane, and Jane loves
Jane.

(7) is what I will call the “Stalker scenario”. It says that everyone is loved by
someone. What this says is that if you go through the domain of discourse,
pulling people one at a time, you will be able to find at least one other person
who loves the selected person. So, if we consider Jane, John, and Sally, (7) is
true in the case that, beginning with Jane, we can find at least one other person
who loves Jane (e.g. John, but it could be anyone) and one person who loves
John and one person who loves Sally. The person doing the loving need not be
the same person in each case, nor is it the case that everyone loves someone. (7)
differs from (5) in that it doesn’t imply that everyone loves at least one other
person. (7), in contrast, can be true if John loves Sally and Jane and himself,
but neither Sally nor Jane love anyone. (7) also differs from (6) in that it doesn’t
imply that everyone loves at least one object.

(8) is what I will call the “Loving God scenario”. It says that someone loves
everyone. (8) is true provided there is at least one person who loves every single
person in the domain. In contrast to (5), (8) does not imply that everyone loves
at least one other person. Rather, it says that there is at least one person who
loves all people. In contrast to (6), (8) does not imply that there is at least one
person loved by all. It only says that there is one person who loves all. Finally,
while (8) implies (7)–for if someone loves everyone, then everyone is loved by at
least one person–(7) does not imply (8). This is because (7) can be true in a
case where (8) is not, namely in the case where everyone is loved by someone,
but everyone is not loved by a single person.

1. (∀x)(∀y)Lxy Everyone loves everyone.
2. (∀y)(∀x)Lxy Everyone loves everyone.
3. (∃x)(∃y)Lxy Someone loves someone.
4. (∃y)(∃x)Lxy Someone loves someone.
5. (∀x)(∃y)Lxy Everyone loves someone.
6. (∃y)(∀x)Lxy Someone is loved by everyone.
7. (∀y)(∃y)Lxy Everyone is loved by someone.
8. (∃y)(∀y)Lxy Someone loves everyone.

Questions

1. Know all of the symbols of RL, viz., which symbols are names, vari-
ables, truth-functional operators, quantifiers

2. Know how to determine if a formula is a well-formed formula. For



92 RL: Symbols, Syntax, Semantics, Translation

example, which of the following are wffs (where Px is a one-place pred-
icate and Rxy is a two-place predicate): Pa, Pab, (∀x)Px, (∃x)Rxx,
¬¬Pa, (∀x)(∀y)Rxy, Px, Rxy

3. Know the definition of a free variable, a bound variable, an open for-
mula, a closed formula.

4. For any well-formed formula, know how to identify whether it has any
free or bound variables and whether the formula is open or closed.

5. Given a model, know how to determine whether a closed wff is true or
false. For example, if D = {a, b, c, d, e},I (a) = a,I (b) = b,I (c) =
c,I (d) = d,I (e) = e,I (P ) = {a, b, c, d},I (R) = {e}, determine
whether the following wffs are true or false:
• Pa
• (∀x)Px
• Pa ∧ Pb
• (∃x)Px
• (∃x)¬Px

6. Given a translation key, be able to translate an English sentence into a
wff in RL.

7. In comparison to RL, what is the principal weakness of PL as a formal
system?

8. What is a model in RL?
9. What is an interpretation in RL?




