
Handout 5

PL Derivations

In this chapter, we specify a deductive apparatus for PL.

Definition – deductive apparatus

A deductive apparatus for PL is a set of rules of inference (or “derivation”
rules) that determine which ways that formulas can be transformed. That
is, it is a list of permissible rules that express which wffs Q can be written
after which formulas P in a proof. The deductive apparatus for PL is
hereafter abbreviated as PD.

We can think of the deductive apparatus as motivated by arguing in everyday
life. Suppose two people Tek and Liz agree on a great many things. They have
similar life experiences, they read many of the same scientific studies, and they
have similar values. Let’s refer to the set of propositions that Tek and Liz both
take as true Γ (where Γ just represents a set of propositions, e.g. A,B,C, . . .M).
Now suppose that Tek thinks that from Γ, we can easily reason to another set
of propositions P,Q,R. Tek contends that if we believe Γ then we ought to also
believe P,Q,R. In contrast, Liz says that even if all of the propositions in Γ are
true, there is no way to reason to P,Q,R.

Tek and Liz don’t disagree about any facts concerning the world. What they
disagree about is whether P,Q,R follows from Γ, or what follows from what.
To fix this problem, they decide to develop a set of rules that specify how one
can reason from one proposition (or groups of propositions) to another. The
rules are formulated in a highly general (abstract) way so that it can apply to
any particular subject matter. This set of rules is their deductive apparatus.

Definition – derivation of Q in PD

A derivation in PD of Q is a finite (not infinite and not empty) string of
formulas from a set Γ of PL wffs where (i) the last formula in the string
is Q and (ii) each formula is either a premise, an assumption, or is the
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result of the preceding formulas and the deductive apparatus.

Definition – syntactic consequence

A formula Q is a syntactic consequence in PD of a set Γ of PL wffs if
and only if there is a derivation in PD of Q from Γ. To express that Q is
a syntactic consequence of Γ, we write Γ ` Q.

We can think of a derivation using PD and the notion of syntactic consequence
as the result of Tek and Liz using their deductive apparatus to reason to some
proposition. For instance, suppose that Tek and Liz agree upon a set of rules
that permit reasoning from one proposition to the next. Tek then contends that
if Tek and Liz both accept Γ then they also should accept Q. Liz is unconvinced.
To convince her of Q, Tek writes down all of the propositions expressed by Γ and
then shows how, using the deductive apparatus, Q can be written down as well.
This process of writing down premises, making assumptions, and propositions
permitted by the deductive apparatus is a “derivation”. Saying that Q is a
syntactic consequence of Γ merely expresses the fact that there is a derivation
from Γ to Q

5.1 Setup

Consider the following: P ∧ R, Y → R ` Z. This set of symbols says that Z
is a syntactic consequence of P ∧ R, Y → R. As such, it says that there is
a derivation from P ∧ R, Y → R to Z. How do we show that there is such
a derivation. First, a derivation begins with an initial setup involving three
columns:

1. for numbering the premises,
2. writing (stacking) the propositions,
3. justification of propositions and indicating the goal proposition (or con-

clusion)

1 P ∧R P
2 Y → R P,Z

In the setup of the above derivation, ‘P ∧R’ and ‘Y → R’ are premises (and we
use ‘P ’) to indicate this. The conclusion (goal proposition) is ‘Z’.

5.2 Proofs: Intelim Derivation Rules

In what follows, we develop the deductive apparatus (PD). The particular type
of deductive apparatus developed here is known as a system of “natural deduc-
tion” as the particular rules are akin to certain rules of inference (or reason)
people use in everyday arguments. The particular rules of PD will be called
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the “derivation rules”. There are two main types of derivation rules: introduc-
tion rules (these introduce a proposition of a certain type into a proof) and
elimination rules (these begin from propositions of a certain type in a proof).

Derivation Rule – Conjunction Introduction ∧I
From P and Q, we can derive P ∧Q. Also, from P and Q, we can derive
Q ∧ P .

P,Q ` P ∧Q
P,Q ` Q ∧ P

We represent derivation rules in a variety of different ways. First, we can rep-
resent them as tree-like structures where propositions below a line represent
those that are “deduced” or “derived” from those above the line. Second, we can
provide a minimal working example of the derivation rule (see Figure 5.1). In
this handout, we represent derivation rules using the latter method.

P Q
∧I

P ∧Q

1 P P
2 Q P
3 P ∧Q ∧I, 1, 2

Figure 5.1 – Two Ways of Representing a Derivation. Where P
and Q are metavariables for any wff in PL

Conjunction introduction states that from two different propositions, we can
derive the conjunction of these propositions. For example, prove: P,R,Z ` P∧Z

1 P P
2 R P
3 Z P
4 P ∧ Z ∧I, 1, 3

Derivation Rule – Conjunction Elimination (∧E)

From P ∧Q, we can derive P . Also, from P ∧Q, we can derive Q.

P ∧Q ` P or P ∧Q ` Q

Conjunction elimination states that from a conjunction, we can derive either of
the conjuncts. For example, prove: P ∧ Z ` Z

1 P ∧ Z P
2 Z ∧E, 1
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Exercise 1:

1. P ∧ (R ∧M) ` R
2. P ∧ (R ∧M) `M
3. P,R,M ` (M ∧ P ) ∧R
4. P,R,M ` (M ∧R) ∧R
5. P ∧R,¬Z ∧ ¬W ` P ∧ ¬W
6. P ∧ (¬R ∧ ¬W ), L,R ∧ Z ` ¬R ∧ (L ∧ Z)

5.2.1 Assumptions & Subproofs

An assumption (abbreviated as ‘A’) is a proposition taken to be, or assumed,
true for the purpose of proof. Each time you make an assumption, you indent,
draw a line indicating that you are moving into a subproof, and justify that
proposition you assumed with an ‘A’.

1 MainLine

2 Assumption

3 Subproof

4 .

5 .

6 .

After you’ve made an assumption, you can reason within the subproof that has
been created by the assumption:

1 S P

2 B A

3 S ∧B ∧I, 1, 2

4 .

5 .

6 .

The above is similar to saying ‘Let’s agree that ‘S’ is true. Now, let’s assume
‘B’ is true. Well, if ‘S’ is true, then given our assumption ‘B’, it follows that
‘S ∧B’.

You are not limited to one assumption. You can make assumptions within
assumptions. For example, consider the proof just below. This proof reads
something like the following:
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Let’s say that ‘Q’ is true. Given that ‘Q’ is true, let’s assume ‘S’. Now that
we’ve assumed ‘S’, let’s assume ‘W’.

1 Q P

2 S A

3 W A

4 .

5 .

6 .

You can think of subproofs like containers or nests. That is the subproof begun
by S contains the subproof begun by W. Likewise, the mainline of the proof,
beginning with ‘Q’ contains the subproofs begun by ‘S’ and ‘W’. In the language
of nests, ‘W’ is in the nest begun by ‘S’ and ‘S’ is in the nest of the main line
of the proof. ‘W’ is in the most deeply nested part of the proof while ‘Q’ is in
the least deeply nested part.

In addition, sometimes in proofs you will make an assumption and then make
another assumption that is not related to the first assumption:

1 A P

2 B A

3 A ∧B ∧I, 1, 2

4 .

5 .

6 C A

7 A ∧ C ∧I, 1, 6

8 .

9 .

You can use derivation rules to reason within subproofs, but there are certain
restrictions. The basic rule is the following:

If P is in a section of the proof S1 that contains another subproof S2, then P
can be used in S2. If R is in a section of the proof S3 that does not contain a
subproof S4, then R cannot be used in S4.
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5.2.2 Assumptions & Subproofs: Violations!

The above rule is violated when using a proposition inside a subproof, you derive
a proposition outside the subproof.

Example # 1: Z is in the subproof and used to derive Z ∧ R, a proposition
which is not in the subproof containing Z

1 R P

2 Z A

3 R ∧ Z ∧I, 1, 2

4 Z ∧R,NO! ∧I, 1, 2

Example # 2: B is in the subproof and used to derive B ∧ C, a proposition
which is not in the subproof containing B

1 A P

2 B A

3 A ∧B ∧I, 1, 2

4 C A

5 B ∧ C,NO! ∧I, 2, 4

Derivation Rule – Conditional Introduction (→ I)

From a derivation of Q within a subproof involving an assumption P , we
can derive P → Q out of the subproof.

n P A
...

...

(n + 1) Q

(n + 2) P → Q → I, n–(n + 1)

Conditional introduction allows for introducing a conditional P → Q outside of
a subproof given a subproof containing P as the assumption and Q as a derived
proposition within that subproof.

Here is an example: R ` Z → R
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1 R P

2 Z A

3 Z ∧R ∧I, 1, 2

4 R ∧E, 3

5 Z → R → I, 2–4

Exercise 2:

1. R ∧ Z `W → Z

Derivation Rule – Conditional Elimination (→ E)

From P → Q and P , we can derive Q.

P → Q,P ` Q

Conditional elimination allows for deriving a proposition Q provided we have a
conditional P → Q and the antecedent P of that conditional.

Here is an example: Z → R,Z ∧ P ` R

1 Z → R P
2 Z ∧ P P R
3 Z ∧E, 2
4 R → E, 1, 3

Exercise 3:

1. R→ Z,Z →W,R ∧M `W ∧M

Derivation Rule – Reiteration (R)

From P we can derive P.

P ` P

Reiteration allows for deriving a proposition P provided P already occurs in the
proof. Here are two examples.

Example # 1: Z ` Z
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1 Z P,Z
2 Z R, 1

Example # 2: R ` Z → R

1 R P,Z → R

2 Z A

3 R R, 1

4 Z → R → I, 2–3

Exercise 4:

1. P → Z,P ` P ∧ Z
2. (P ∧ Z)→W,P,Z `W
3. P ` R→ P
4. P,M ` (R ∨ F )→ (P ∧M)
5. (R ∨ F )→ Z,M ∧ (R ∨ F ) `M ∧ Z
6. R→ P,R ∧ L,` P → (L ∧R)
7. ` R→ R
8. ` R→ (R ∧R)
9. ` R→ [Z → (M → Z)]

A Word of Encouragement

For students taking a first course in symbolic logic, proofs tend to be one
of the most difficult topics to grasp. Unlike decision procedures (truth
tables and truth trees), the process of solving a proof requires the use of
strategies and a little trial-and-error. As you work through various proofs,
don’t get discouraged if you are unable to get the answer immediately or
if you have to start a proof over. Just keep at it and practice, practice,
practice!

Derivation Rule – Negation Introduction (¬I)

From a derivation of a proposition Q and its literal negation ¬Q within a
subproof involving an assumption P , we can derive ¬P out of the subproof.
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n P A
...

...

(n + 1) Q

(n + 2) ¬Q
(n + 3) ¬(P ) ¬I, n–(n + 2)

Derivation Rule – Negation Elimination (¬E)

From a derivation of a proposition Q and its literal negation ¬Q within
a subproof involving an assumption ¬(P ), we can derive P out of the
subproof.

n ¬(P ) A
...

...

(n + 1) Q

(n + 2) ¬Q
(n + 3) P ¬E, n–(n + 2)

Exercise 5:

1. P ∧ ¬P ` R
2. (P ∨Q)→ R,P ∨Q,¬R ` ¬W

Derivation Rule – Disjunction Introduction (∨I)

From P , we can derive P ∨Q or Q ∨ P .

P ` P ∨Q
P ` Q ∨ P

Derivation Rule – Disjunction Elimination (∨E)

From P ∨Q and two derivations of R—one involving P as an assumption
in a subproof, the other involving Q as an assumption in a subproof—we
can derive R out of the subproof.



5.2 Proofs: Intelim Derivation Rules 67

1 P ∨Q P

n P A
...

...

(n + 1) R

(i) Q A
...

...

(i + 1) R

(k) R ∨E, 1, n–(n + 1), (i)–(i + 1)

Exercise 6:

1. (P ∨ Z)→ R,Z ` R ∨ ¬L
2. P ∨Q,P → R,Q→ R ` R
3. T ∨ (Z ∧M), (Z ∧M)→ (¬R ∧ S), T → (¬R ∧ S) ` ¬R

Derivation Rule – Biconditional Introduction (↔ I)

From a derivation of Q within a subproof involving an assumption P and
from a derivation of P within a separate subproof involving an assumption
Q, we can derive P ↔ Q out of the subproof.

n P A
...

...

(n + 1) Q

(i) Q A
...

...

(i + 1) P

(k) P ↔ Q ↔ I, n–(n + 1), (i)–(i + 1)

Derivation Rule – Biconditional Elimination (↔ E)

From P ↔ Q and P , we can derive Q. And, from P ↔ Q and Q, we can
derive P .

P ↔ Q,P ` Q
P ↔ Q,Q ` P
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Exercise 7:

1. (F ∨ Z)→ (T ∧ P ), (P ∨M)→ (R ∧ Z) ` P ↔ Z
2. (P ∨ ¬M)↔ R,P ↔ (W ∨ L), L ` R

5.3 Proofs: Strategies

There are two main types of strategies: proof strategies and assumption strate-
gies.

SP# 1 (E) First, eliminate any conjunctions with ∧E, disjunctions
with ∨E, conditionals with → E, and biconditionals
with ↔ E. Then, if necessary, use any necessary intro-
duction rules to reach the desired conclusion.

SP# 2 (B) First, work backward from the conclusion using intro-
duction rules (e.g. ∧I,∨I,→ I,↔ I). Then, use SP# 1
(E).

Table 5.1 – Proof Strategies

Exercise 8:

1. P → (R ∧M), (P ∧ S) ∧ Z ` R
2. P → R,Z →W,P ` R ∨W

SA# 1 (P,¬Q) If the conclusion is an atomic proposition (or a negated
proposition), assume the negation of the proposition (or
the non-negated form of the negated proposition), derive
a contradiction and then use ¬I or ¬E.

SA# 2 (→ ) If the conclusion is a conditional, assume the antecedent,
derive the consequent, and use → I.

SA# 3 (∧ ) If the conclusion is a conjunction, you will need two
steps. First, assume the negation of one of the con-
juncts, derive a contradiction, and then use ¬I or ¬E.
Second, in a separate subproof, assume the negation of
the other conjunct, derive a contradiction, and then use
¬I or ¬E. From this point, a use of ∧I will solve the
proof.

SA#4 (∨) If the conclusion is a disjunction, assume the negation of
the whole disjunction, derive a contradiction, and then
use ¬I or ¬E.

Table 5.2 – Assumption Strategies

Exercise 9:

1. P → Q,¬Q ` ¬P
2. R ` ¬(D ∨ L)→ R
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3. ¬(P ∨R) ` ¬P ∧ ¬R
4. ¬(¬P ∧ ¬Q) ` P ∨Q

Consider ¬(¬P ∧ ¬Q) ` P ∨ Q. The strategy associated with assumptions is
SA#3.

1 ¬(¬P ∧ ¬Q) P, P ∨Q

2 ¬(P ∨Q) A/P,¬P
...

...

The subgoal at this point is to generate a proposition P and its literal negation
¬P in the subproof, but it is not clear how to do this. You cannot generate P
and ¬P out of nothing so consider what propositions you do have and try to
derive a proposition that is a literal negation of these.

1 ¬(¬P ∧ ¬Q) P, P ∨Q

2 ¬(P ∨Q) A/P,¬P
...

...

# ¬P ∧ ¬Q or P ∨Q ?

We thus have two options:

Option # 1: derive ¬P ∧¬Q since ¬(¬P ∧¬Q) is its literal negation Option #
2: derive P ∨Q since ¬(P ∨Q) is its literal negation

Consider option # 2. If we were to try to derive P ∨ Q, we need to make an
assumption, and the strategic rule associated with deriving disjunctions SA#4
says to assume the negation, derive P and ¬P , and then use ¬E or ¬I. In the
case of the above proof, the next step would be as follows:

1 ¬(¬P ∧ ¬Q) P, P ∨Q

2 ¬(P ∨Q) A/P,¬P

3 ¬(P ∨Q) A/P,¬P
...

...

# ¬P ∧ ¬Q or P ∨Q ?

But this does not help since we still have no way to get P , ¬P in the proof. So,
consider option # 1. If we were to try and derive ¬P ∧ ¬Q, we would need to
make an assumption, and the strategic rule associated with conjunctions SA#
3(∧) says to assume the literal negation of each of the conjuncts in separate
subproofs, derive P and ¬P in each, and then use ¬I or ¬E.
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1 ¬(¬P ∧ ¬Q) P, P ∨Q

2 ¬(P ∨Q) A/P,¬P

3 P A/P,¬P
...

...

n Q A/P,¬P
...

...

Now the proof can be more easily solved.

Exercise 10:

1. (¬P ∧ L) → ¬Q, (M ∧ T ) ∧ (¬R ∧ L), (M ∧ ¬R) → (Z ∧ ¬P ) `
¬Q ∨ (A↔ B)

2. ¬R ` P ∨ ¬W → (Q ∨ ¬R)
3. ` ¬(W ∧ ¬W )
4. P, (P ∨W )→ (R ∧ T ), (T ∨ ¬V )↔ (¬R ∧ T ) ` S
5. ¬P ∨R ` P → R
6. P → R ` ¬P ∨R

5.4 Proofs: Additional Derivation Rules (PD+)

The set of 10 intelim rules along with reiteration forms PD, a derivation system
capable of proving any valid argument in PL. In other words, PD consists of all
of the essential derivation rules we need. However, you may have noticed that
the proofs for many straightforwardly valid arguments are overly difficult or
time-consuming. For example, the proof of P ∨Q,¬Q ` P is overly complicated
given that the argument is straightforwardly valid. In what follows, a number
of additional derivation rules are added to PD to form PD+. These additional
derivation rules serve to expedite the proof solving process.

Derivation Rule – Disjunctive Syllogism (DS)

From P ∨Q and ¬Q, we can derive P . From P ∨Q and ¬P , we can derive
Q.

P ∨Q,¬Q ` P
P ∨Q,¬P ` Q

The general idea is that given a disjunction P ∨ Q and the literal negation of
one of the disjuncts (either ¬P or ¬Q), we can derive the other disjunct.

1 P ∨ (R ∧ S) P
2 ¬(R ∧ S) P
3 P DS, 1, 2
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Derivation Rule – Modus Tollens (MT)

From P → Q and ¬Q, we can derive ¬P .

P → Q,¬Q ` ¬P

The general idea is that given a conditional P → Q and the literal negation of
the consequent ¬Q, the negation of the antecedent ¬P can be derived.

1 P → (S ∨R) P
2 ¬(S ∨R) P
3 ¬P MT, 1, 2

Derivation Rule – Hypothetical Syllogism (HS)

From P → Q and Q→ R, we can derive P → R.

P → Q,Q→ R ` P → R

The idea is that if you have two conditionals P → Q and Q → R where the
consequent of one conditional P → Q is the antecedent of the other conditional
Q→ R, then you can derive a third conditional P → R.

Exercise 11:

1. (R ∧ T ) ∨ ¬W,S ∧ ¬¬W ` R ∧ T
2. (P ∧ S)→W,¬W ∧ T ` ¬(P ∧ S)
3. (R ∧ T )→ ¬W,M → (R ∧ T ),¬W → (S ∧R) `M → (S ∧R)
4. P ∨ ¬(R ∨ S), R, L→ ¬P ` ¬L

5.5 Proofs: Additional Derivation Rules (PD+),
The Replacement Rules

All of the previous derivation rules have been inference rules, these are derivation
rules that allow for deriving a proposition of one form from a proposition of
another form. In addition to adding DS, MT, and HS to PD, we will also add a
new kind of derivation rule, known as replacement rules. Replacement rules are
derivation rules that allow for interchanging certain formulas or sub-formulas.

Derivation Rule – Double Negation (DN)

From P , we can derive ¬¬P . From ¬¬P , we can derive P .

P a` ¬¬P
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DN allows for replacing a single formula or single subformula with its doubly
negated form or taking a doubly negated formula and replacing it with its un-
negated form. For example,

1 P → R P,¬¬(P → R)
2 ¬¬(P → R) DN, 1

It is important to note that replacement rules can be applied to a single subfor-
mula. For example,

1 P ∨ ¬¬(R ∧ S) P/P ∨ (R ∧ S)
2 P ∨ (R ∧ S) DN, 1

But, be careful! DN must be applied to the whole of a formula or subformula
and not to part of one subformula and part of another subformula:

1 P ∨ (R ∧ S) P
2 P ∨ ¬(¬R ∧ S), NO! DN, 1

Derivation Rule – De Morgan’s Laws (DeM)

From ¬(P ∨ Q), we can derive ¬P ∧ ¬Q. From ¬P ∧ ¬Q, we can derive
¬(P ∨Q). From ¬(P ∧Q), we can derive ¬P ∨ ¬Q. From ¬P ∨ ¬Q, we
can derive ¬(P ∧Q).

¬(P ∨Q) a` ¬P ∧ ¬Q
¬(P ∧Q) a` ¬P ∨ ¬Q

In the case of DeM, you can interchange a negated disjunction ¬(P ∨ Q) with
a conjunction whose conjuncts are negated ¬P ∧ ¬Q (and vice versa) and you
can interchange a negated conjunction ¬(P ∨ Q) with a disjunction ¬P ∨ ¬Q
whose disjuncts are negated (and vice versa).

For example, in the following proof, De Morgan’s laws are applied to ¬R ∧ ¬Q
to derive ¬(R ∨ Q), i.e. turning a conjunction with negated conjuncts into a
negated disjunction.

1 P → (R ∨Q) P
2 ¬R ∧ ¬Q P,¬P
3 ¬(R ∨Q) DeM , 2
4 ¬P MT, 1, 3

In the example below, DeM is applied to the negated disjunction ¬(R ∨ S) to
derive a conjunction with two negated disjuncts.
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1 ¬(R ∨ S) P
2 ¬R ∧ ¬S DeM , 1
3 ¬R 2 ∧ E, 2

Derivation Rule – Implication (IMP)

From P → Q, we can derive ¬P ∨Q. From ¬P ∨Q, we can derive P → Q.
P → Q a` ¬P ∨Q

In the case of IMP, you can interchange a negated conditional P → Q with a
disjunction ¬P ∨Q.

Remembering that replacement rules can be applied to single sub-formula, notice
how IMP is applied to the subformula ‘P → R’ in ‘¬(P → R)’ in the following
example:

1 ¬(P → R) P
2 ¬(¬P ∨R) IMP , 1
3 ¬¬P ∧ ¬R DeM , 2
4 ¬¬P ∧E, 3
5 P DN , 4

Exercise 12:

1. ¬¬P → R,P,¬¬R→ (W ∧ Z) ` ¬¬(W ∧ ¬¬Z)
2. ¬(P ∨R)→ (¬Z ∨ ¬W ),¬P ∧ ¬R ` ¬(Z ∧W )
3. (P → R), (¬P ∨R)→ (Z → ¬R) ` ¬Z ∨ ¬R
4. ¬P ∨R,¬(P → R) ` S
5. P → ¬(Z ∨ S),¬(P → R) ` ¬Z ∨W
6. P,¬(¬P ∧ ¬R)→ ¬(S → T ) ` S

5.6 Proofs: Revised Strategic Rules

In enhancing our proof system from PD to PD+, we also want to enhance the
strategies with which we solve proofs.

SP# 1 (E+) First, eliminate any conjunctions with ∧E, disjunctions with DS
or ∨E, conditionals with → E or MT , and biconditionals with ↔ E. Then, if
necessary, use any necessary introduction rules to reach the desired conclusion.

SP# 2 (B) First, work backward from the conclusion using introduction rules
(e.g. ∧I, ∨I, → I, ↔ I). Then, use SP# 1(E).

SP# 3 (EQ+) Use DeM on any negated disjunctions or negated conjunctions,
and then use SP# 1(E). Use IMP on negated conditionals, then use DeM , and
then use SP# 1(E).
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Exercise 13:

1. P ↔ (R ∨ S), P ∧ ¬S,Q→ ¬R ` ¬Q
2. R ∨ (M ∧ T ),¬R ∧ ¬W,L→W ` ¬L
3. (R ∨M) ∨ ¬(S ∨ T ), (S ∨ T ) ∨ (Z ∧ E),¬(R ∨M) ` E
4. ¬(P ∨R),¬P → ¬(M ∨ S),¬R→ ¬Q ` ¬M ∧ ¬Q
5. ¬(P → R), P → Z,¬R→M ` Z ∧M
6. ¬(¬P → ¬R), Z → P ` ¬Z ∧R
7. ` ¬(P → R)→ (S → ¬R)
8. ` ¬(P ∨R)→ [(Z → R)→ ¬Z]
9. ` [¬(P →M) ∧ ¬(T → S)] ∨ (P ∨ ¬P )
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Derivation Rule – Conjunction Introduction ∧I
P,Q ` P ∧Q
P,Q ` Q ∧ P

Derivation Rule – Conjunction Elimination (∧E)

P ∧Q ` P or P ∧Q ` Q

Derivation Rule – Conditional Introduction (→ I)

n P A
...

...

(n + 1) Q

(n + 2) P → Q → I, n–(n + 1)

Derivation Rule – Conditional Elimination (→ E)

P → Q,P ` Q

Derivation Rule – Reiteration (R)

P ` P

Derivation Rule – Negation Introduction (¬I)

n P A
...

...

(n + 1) Q

(n + 2) ¬Q
(n + 3) ¬(P ) ¬I, n–(n + 2)

Derivation Rule – Negation Elimination (¬E)
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n ¬(P ) A
...

...

(n + 1) Q

(n + 2) ¬Q
(n + 3) P ¬E, n–(n + 2)

Derivation Rule – Disjunction Introduction (∨I)

P ` P ∨Q or P ` Q ∨ P

Derivation Rule – Disjunction Elimination (∨E)

1 P ∨Q P

n P A
...

...

(n + 1) R

(i) Q A
...

...

(i + 1) R

(k) R ∨E, 1, n–(n + 1), (i)–(i + 1)

Derivation Rule – Biconditional Introduction (↔ I)

n P A
...

...

(n + 1) Q

(i) Q A
...

...

(i + 1) P

(k) P ↔ Q ↔ I, n–(n + 1), (i)–(i + 1)

Derivation Rule – Biconditional Elimination (↔ E)

P ↔ Q,P ` Q or P ↔ Q,Q ` P
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Derivation Rule – Disjunctive Syllogism (DS)

P ∨Q,¬Q ` P or P ∨Q,¬P ` Q

Derivation Rule – Modus Tollens (MT)

P → Q,¬Q ` ¬P

Derivation Rule – Hypothetical Syllogism (HS)

P → Q,Q→ R ` P → R

Derivation Rule – Double Negation (DN)

P a` ¬¬P

Derivation Rule – De Morgan’s Laws (DeM)

¬(P ∨Q) a` ¬P ∧ ¬Q
¬(P ∧Q) a` ¬P ∨ ¬Q

Derivation Rule – Implication (IMP)

P → Q a` ¬P ∨Q




